ﻻ يوجد ملخص باللغة العربية
We compute the exact norms of the Leray transforms for a family $mathcal{S}_{beta}$ of unbounded hypersurfaces in two complex dimensions. The $mathcal{S}_{beta}$ generalize the Heisenberg group, and provide local projective approximations to any smooth, strongly $mathbb{C}$-convex hypersurface $mathcal{S}_{beta}$ to two orders of tangency. This work is then examined in the context of projective dual $CR$-structures and the corresponding pair of canonical dual Hardy spaces associated to $mathcal{S}_{beta}$, leading to a universal description of the Leray transform and a factorization of the transform through orthogonal projection onto the conjugate dual Hardy space.
The Leray transform and related boundary operators are studied for a class of convex Reinhardt domains in $mathbb C^2$. Our class is self-dual; it contains some domains with less than $C^2$-smooth boundary and also some domains with smooth boundary a
We show that the boundary of any bounded strongly pseudoconvex complete circular domain in $mathbb C^2$ must contain points that are exceptionally tangent to a projective image of the unit sphere.
Consider a $2$-nondegenerate constant Levi rank $1$ rigid $mathcal{C}^omega$ hypersurface $M^5 subset mathbb{C}^3$ in coordinates $(z, zeta, w = u + iv)$: [ u = Fbig(z,zeta,bar{z},bar{zeta}big). ] The Gaussier-Merker model $u=frac{zbar{z}+ frac{1}{2}
We give a complete characterization of those disk bundles over surfaces which embed as rationally convex strictly pseudoconvex domains in $mathbb{C}^2$. We recall some classical obstructions and prove some deeper ones related to symplectic and contac
The goal of this article is to prove the Sum of Squares Conjecture for real polynomials $r(z,bar{z})$ on $mathbb{C}^3$ with diagonal coefficient matrix. This conjecture describes the possible values for the rank of $r(z,bar{z}) |z|^2$ under the hypot