ترغب بنشر مسار تعليمي؟ اضغط هنا

Rationally Convex Domains and Singular Lagrangian Surfaces in $mathbb{C}^2$

146   0   0.0 ( 0 )
 نشر من قبل Kyler Siegel
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We give a complete characterization of those disk bundles over surfaces which embed as rationally convex strictly pseudoconvex domains in $mathbb{C}^2$. We recall some classical obstructions and prove some deeper ones related to symplectic and contact topology. We explain the close connection to Lagrangian surfaces with isolated singularities and develop techniques for constructing such surfaces. Our proof also gives a complete characterization of Lagrangian surfaces with open Whitney umbrellas, answering a question first posed by Givental in 1986.



قيم البحث

اقرأ أيضاً

The Leray transform and related boundary operators are studied for a class of convex Reinhardt domains in $mathbb C^2$. Our class is self-dual; it contains some domains with less than $C^2$-smooth boundary and also some domains with smooth boundary a nd degenerate Levi form. $L^2$-regularity is proved, and essential spectra are computed with respect to a family of boundary measures which includes surface measure. A duality principle is established providing explicit unitary equivalence between operators on domains in our class and operators on the corresponding polar domains. Many of these results are new even for the classical case of smoothly bounded strongly convex Reinhardt domains.
We study the homeomorphic extension of biholomorphisms between convex domains in $mathbb C^d$ without boundary regularity and boundedness assumptions. Our approach relies on methods from coarse geometry, namely the correspondence between the Gromov b oundary and the topological boundaries of the domains and the dynamical properties of commuting 1-Lipschitz maps in Gromov hyperbolic spaces. This approach not only allows us to prove extensions for biholomorphisms, but for more general quasi-isometries between the domains endowed with their Kobayashi distances.
The Riemannian product of two hyperbolic planes of constant Gaussian curvature -1 has a natural Kahler structure. In fact, it can be identified with the complex hyperbolic quadric of complex dimension two. In this paper we study Lagrangian surfaces i n this manifold. We present several examples and classify the totally umbilical and totally geodesic Lagrangian surfaces, the Lagrangian surfaces with parallel second fundamental form, the minimal Lagrangian surfaces with constant Gaussian curvature and the complete minimal Lagrangian surfaces satisfying a bounding condition on an important function that can be defined on any Lagrangian surface in this particular ambient space.
We obtain explicit bounds on the difference between local and global Kobayashi distances in a domain of $mathbb C^n$ as the points go toward a boundary point with appropriate geometric properties. We use this for the global comparison of various inva riant distances. We provide some sharp estimates in dimension $1$.
67 - Alberto Verjovsky 2018
These are notes for the CIME school on Complex non-Kahler geometry from July 9th to July 13th of 2018 in Cetraro, Italy. It is an overview of different properties of a class of non-Kahler compact complex manifolds called LVMB manifolds, obtained as t he Hausdorff space of leaves of systems of commuting complex linear equations in an open set in complex projective space ${{mathbb P}_{mathbb C}}^{n-1}$
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا