ترغب بنشر مسار تعليمي؟ اضغط هنا

Controlled-phase manipulation module for orbital-angular-momentum photon states

57   0   0.0 ( 0 )
 نشر من قبل Fang-Xiang Wang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Phase manipulation is essential to quantum information processing, for which the orbital angular momentum (OAM) of photon is a promising high-dimensional resource. Dove prism (DP) is one of the most important element to realize the nondestructive phase manipulation of OAM photons. DP usually changes the polarization of light and thus increases the manipulation error for a spin-OAM hybrid state. DP in a Sagnac interferometer also introduces a mode-dependent global phase to the OAM mode. In this work, we implemented a high-dimensional controlled-phase manipulation module (PMM), which can compensate the mode-dependent global phase and thus preserve the phase in the spin-OAM hybrid superposition state. The PMM is stable for free running and is suitable to realize the high-dimensional controlled-phase gate for spin-OAM hybrid states. Considering the Sagnac-based structure, the PMM is also suitable for classical communication with spin-OAM hybrid light field.

قيم البحث

اقرأ أيضاً

The degree of freedom of orbital angular momentum (OAM) is an important resource in high-dimensional quantum information processing, as the quantum number of OAM can be infinite. The Dove prism (DP) is a most common tool to manipulate the OAM light, such as in interferometers. However, the Dove prism does not preserve the polarization of the photon states and decreases the sorting fidelity of the interferometer. In this work, we analyze the polarization-dependent effect of the DP on single-path Sagnac interferometers. The results are instructive to quantum information processing with OAM light. We also proposed a modified single-path beam splitter Sagnac interferometer (BSSI), of which the sorting fidelity is independent on input polarization and can be 100% in principle. The single-path BSSI is stable for free running. These merits are crucial in quantum information processing, such as quantum cryptography.
So far experimental confirmation of entanglement has been restricted to qubits, i.e. two-state quantum systems including recent realization of three- and four-qubit entanglements. Yet, an ever increasing body of theoretical work calls for entanglemen t in quantum system of higher dimensions. Here we report the first realization of multi-dimensional entanglement exploiting the orbital angular momentum of photons, which are states of the electromagnetic field with phase singularities (doughnut modes). The properties of such states could be of importance for the efforts in the field of quantum computation and quantum communication. For example, quantum cryptography with higher alphabets could enable one to increase the information flux through the communication channels.
Heralded single-photon source (HSPS) with competitive single photon purity and indistinguishability has become an essential resource for photonic quantum information processing. Here, for the first time, we proposed a theoretical regime to enhance he ralded single-photons generation by multiplexing the degree of the freedom of orbital angular momentum (OAM) of down-converted entangled photon pairs emitted from a nonlinear crystal. Experimentally, a proof-of-principle experiment has been performed through multiplexing three OAM modes. We achieve a 47$%$ enhancement in single photon rate. A second-order autocorrelation function $g^{(2)}(0)<0.5$ ensures our multiplexed heralded single photons with good single photon purity. We further indicate that an OAM-multiplexed HSPS with high quality can be constructed by generating higher dimensional entangled state and sorting them with high efficiency in OAM space. Our avenue may approach a good HSPS with the deterministic property.
Single photons with orbital angular momentum (OAM) have attracted substantial attention from researchers. A single photon can carry infinite OAM values theoretically. Thus, OAM photon states have been widely used in quantum information and fundamenta l quantum mechanics. Although there have been many methods for sorting quantum states with different OAM values, the nondestructive and efficient sorter of high-dimensional OAM remains a fundamental challenge. Here, we propose a scalable OAM sorter which can categorize different OAM states simultaneously, meanwhile, preserving both OAM and spin angular momentum. Fundamental elements of the sorter are composed of symmetric multiport beam splitters (BSs) and Dove prisms with cascading structure, which in principle can be flexibly and effectively combined to sort arbitrarily high-dimensional OAM photons. The scalable structures proposed here greatly reduce the number of BSs required for sorting high-dimensional OAMstates. In view of the nondestructive and extensible features, the sorters can be used as fundamental devices not only for high-dimensional quantum information processing, but also for traditional optics.
Hybrid entangled states exhibit entanglement between different degrees of freedom of a particle pair and thus could be useful for asymmetric optical quantum network where the communication channels are characterized by different properties. We report the first experimental realization of hybrid polarization-orbital angular momentum (OAM) entangled states by adopting a spontaneous parametric down conversion source of polarization entangled states and a polarization-OAM transferrer. The generated quantum states have been characterized through quantum state tomography. Finally, the violation of Bells inequalities with the hybrid two photon system has been observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا