ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical Equilibration Across a Quenched Phase Transition in a Trapped Quantum Gas

102   0   0.0 ( 0 )
 نشر من قبل I-Kang Liu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The formation of an equilibrium quantum state from an uncorrelated thermal one through the dynamical crossing of a phase transition is a central question of non-equilibrium many-body physics. During such crossing, the system breaks its symmetry by establishing numerous uncorrelated regions separated by spontaneously-generated defects, whose emergence obeys a universal scaling law with the quench duration. Much less is known about the ensuing re-equilibrating or coarse-graining stage, which is governed by the evolution and interactions of such defects under system-specific and external constraints. In this work we perform a detailed numerical characterization of the entire non-equilibrium process, addressing subtle issues in condensate growth dynamics and demonstrating the quench-induced decoupling of number and coherence growth during the re-equilibration process. Our unique visualizations not only reproduce experimental measurements in the relevant regimes, but also provide valuable information in currently experimentally-inaccessible regimes.



قيم البحث

اقرأ أيضاً

By quenching the strength of interactions in a partially condensed Bose gas we create a super-saturated vapor which has more thermal atoms than it can contain in equilibrium. Subsequently, the number of condensed atoms ($N_0$) grows even though the t emperature ($T$) rises and the total atom number decays. We show that the non-equilibrium evolution of the system is isoenergetic and for small initial $N_0$ observe a clear separation between $T$ and $N_0$ dynamics, thus explicitly demonstrating the theoretically expected two-step picture of condensate growth. For increasing initial $N_0$ values we observe a crossover to classical relaxation dynamics. The size of the observed quench-induced effects can be explained using a simple equation of state for an interacting harmonically-trapped atomic gas.
Using the classical field method, we study numerically the characteristics and decay of the turbulent tangle of superfluid vortices which is created in the evolution of a Bose gas from highly nonequilibrium initial conditions. By analysing the vortex line density, the energy spectrum and the velocity correlation function, we determine that the turbulence resulting from this effective thermal quench lacks the coherent structures and the Kolmogorov scaling; these properties are typical of both ordinary classical fluids and of superfluid helium when driven by grids or propellers. Instead, thermal quench turbulence has properties akin to a random flow, more similar to another turbulent regime called ultra-quantum turbulence which has been observed in superfluid helium.
Heat generated as a result of the breakdown of an adiabatic process is one of the central concepts of thermodynamics. In isolated systems, the heat can be defined as an energy increase due to transitions between distinct energy levels. Across a secon d-order quantum phase transition (QPT), the heat is predicted theoretically to exhibit a power-law scaling, but it is a significant challenge for an experimental observation. In addition, it remains elusive whether a power-law scaling of heat can exist for a first-order QPT. Here we experimentally observe a power-law scaling of heat in a spinor condensate when a system is linearly driven from a polar phase to an antiferromagnetic phase across a first-order QPT. We experimentally evaluate the heat generated during two non-equilibrium processes by probing the atom number on a hyperfine energy level. The experimentally measured scaling exponents agree well with our numerical simulation results. Our work therefore opens a new avenue to experimentally and theoretically exploring the properties of heat in non-equilibrium dynamics.
We present a new theoretical framework for describing an impurity in a trapped Bose system in one spatial dimension. The theory handles any external confinement, arbitrary mass ratios, and a weak interaction may be included between the Bose particles . To demonstrate our technique, we calculate the ground state energy and properties of a sample system with eight bosons and find an excellent agreement with numerically exact results. Our theory can thus provide definite predictions for experiments in cold atomic gases.
Quantum gases of light, as photons or polariton condensates in optical microcavities, are collective quantum systems enabling a tailoring of dissipation from e.g. cavity loss. This makes them a tool to study dissipative phases, an emerging subject in quantum manybody physics. Here we experimentally demonstrate a non-Hermitian phase transition of a photon Bose-Einstein condensate to a new dissipative phase, characterized by a biexponential decay of the condensates second-order coherence. The phase transition occurs due to the emergence of an exceptional point in the quantum gas. While Bose-Einstein condensation is usually connected to ordinary lasing by a smooth crossover, the observed phase transition separates the novel, biexponential phase from both lasing and an intermediate, oscillatory condensate regime. Our findings pave the way for studies of a wide class of dissipative quantum phases, for instance in topological or lattice systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا