ﻻ يوجد ملخص باللغة العربية
We show that, from a topological point of view, considering the Borel and the Wadge hierarchies, 1-counter Buchi automata have the same accepting power than Turing machines equipped with a Buchi acceptance condition. In particular, for every non null recursive ordinal alpha, there exist some Sigma^0_alpha-complete and some Pi^0_alpha-complete omega context free languages accepted by 1-counter Buchi automata, and the supremum of the set of Borel ranks of context free omega languages is the ordinal gamma^1_2 which is strictly greater than the first non recursive ordinal. This very surprising result gives answers to questions of H. Lescow and W. Thomas [Logical Specifications of Infinite Computations, In:A Decade of Concurrency, LNCS 803, Springer, 1994, p. 583-621].
We prove that $omega$-languages of (non-deterministic) Petri nets and $omega$-languages of (non-deterministic) Turing machines have the same topological complexity: the Borel and Wadge hierarchies of the class of $omega$-languages of (non-determinist
We prove in this paper that the length of the Wadge hierarchy of omega context free languages is greater than the Cantor ordinal epsilon_omega, which is the omega-th fixed point of the ordinal exponentiation of base omega. The same result holds for t
We survey recent results on the topological complexity of context-free omega-languages which form the second level of the Chomsky hierarchy of languages of infinite words. In particular, we consider the Borel hierarchy and the Wadge hierarchy of non-
We study the links between the topological complexity of an omega context free language and its degree of ambiguity. In particular, using known facts from classical descriptive set theory, we prove that non Borel omega context free languages which ar
We prove that the determinacy of Gale-Stewart games whose winning sets are accepted by real-time 1-counter Buchi automata is equivalent to the determinacy of (effective) analytic Gale-Stewart games which is known to be a large cardinal assumption. We