ترغب بنشر مسار تعليمي؟ اضغط هنا

The NarrativeQA Reading Comprehension Challenge

110   0   0.0 ( 0 )
 نشر من قبل Tom\\'a\\v{s} Ko\\v{c}isk\\'y
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Reading comprehension (RC)---in contrast to information retrieval---requires integrating information and reasoning about events, entities, and their relations across a full document. Question answering is conventionally used to assess RC ability, in both artificial agents and children learning to read. However, existing RC datasets and tasks are dominated by questions that can be solved by selecting answers using superficial information (e.g., local context similarity or global term frequency); they thus fail to test for the essential integrative aspect of RC. To encourage progress on deeper comprehension of language, we present a new dataset and set of tasks in which the reader must answer questions about stories by reading entire books or movie scripts. These tasks are designed so that successfully answering their questions requires understanding the underlying narrative rather than relying on shallow pattern matching or salience. We show that although humans solve the tasks easily, standard RC models struggle on the tasks presented here. We provide an analysis of the dataset and the challenges it presents.



قيم البحث

اقرأ أيضاً

Achieving human-level performance on some of Machine Reading Comprehension (MRC) datasets is no longer challenging with the help of powerful Pre-trained Language Models (PLMs). However, the internal mechanism of these artifacts still remains unclear, placing an obstacle for further understanding these models. This paper focuses on conducting a series of analytical experiments to examine the relations between the multi-head self-attention and the final performance, trying to analyze the potential explainability in PLM-based MRC models. We perform quantitative analyses on SQuAD (English) and CMRC 2018 (Chinese), two span-extraction MRC datasets, on top of BERT, ALBERT, and ELECTRA in various aspects. We discover that {em passage-to-question} and {em passage understanding} attentions are the most important ones, showing strong correlations to the final performance than other parts. Through visualizations and case studies, we also observe several general findings on the attention maps, which could be helpful to understand how these models solve the questions.
Machine reading is a fundamental task for testing the capability of natural language understanding, which is closely related to human cognition in many aspects. With the rising of deep learning techniques, algorithmic models rival human performances on simple QA, and thus increasingly challenging machine reading datasets have been proposed. Though various challenges such as evidence integration and commonsense knowledge have been integrated, one of the fundamental capabilities in human reading, namely logical reasoning, is not fully investigated. We build a comprehensive dataset, named LogiQA, which is sourced from expert-written questions for testing human Logical reasoning. It consists of 8,678 QA instances, covering multiple types of deductive reasoning. Results show that state-of-the-art neural models perform by far worse than human ceiling. Our dataset can also serve as a benchmark for reinvestigating logical AI under the deep learning NLP setting. The dataset is freely available at https://github.com/lgw863/LogiQA-dataset
Multi-choice Machine Reading Comprehension (MRC) as a challenge requires model to select the most appropriate answer from a set of candidates given passage and question. Most of the existing researches focus on the modeling of the task datasets witho ut explicitly referring to external fine-grained knowledge sources, which is supposed to greatly make up the deficiency of the given passage. Thus we propose a novel reference-based knowledge enhancement model called Reference Knowledgeable Network (RekNet), which refines critical information from the passage and quote explicit knowledge in necessity. In detail, RekNet refines fine-grained critical information and defines it as Reference Span, then quotes explicit knowledge quadruples by the co-occurrence information of Reference Span and candidates. The proposed RekNet is evaluated on three multi-choice MRC benchmarks: RACE, DREAM and Cosmos QA, which shows consistent and remarkable performance improvement with observable statistical significance level over strong baselines.
242 - Yuan Miao , Gongqi Lin , Yidan Hu 2019
Reading comprehension is an important ability of human intelligence. Literacy and numeracy are two most essential foundation for people to succeed at study, at work and in life. Reading comprehension ability is a core component of literacy. In most o f the education systems, developing reading comprehension ability is compulsory in the curriculum from year one to year 12. It is an indispensable ability in the dissemination of knowledge. With the emerging artificial intelligence, computers start to be able to read and understand like people in some context. They can even read better than human beings for some tasks, but have little clue in other tasks. It will be very beneficial if we can identify the levels of machine comprehension ability, which will direct us on the further improvement. Turing test is a well-known test of the difference between computer intelligence and human intelligence. In order to be able to compare the difference between people reading and machines reading, we proposed a test called (reading) Comprehension Ability Test (CAT).CAT is similar to Turing test, passing of which means we cannot differentiate people from algorithms in term of their comprehension ability. CAT has multiple levels showing the different abilities in reading comprehension, from identifying basic facts, performing inference, to understanding the intent and sentiment.
Recent powerful pre-trained language models have achieved remarkable performance on most of the popular datasets for reading comprehension. It is time to introduce more challenging datasets to push the development of this field towards more comprehen sive reasoning of text. In this paper, we introduce a new Reading Comprehension dataset requiring logical reasoning (ReClor) extracted from standardized graduate admission examinations. As earlier studies suggest, human-annotated datasets usually contain biases, which are often exploited by models to achieve high accuracy without truly understanding the text. In order to comprehensively evaluate the logical reasoning ability of models on ReClor, we propose to identify biased data points and separate them into EASY set while the rest as HARD set. Empirical results show that state-of-the-art models have an outstanding ability to capture biases contained in the dataset with high accuracy on EASY set. However, they struggle on HARD set with poor performance near that of random guess, indicating more research is needed to essentially enhance the logical reasoning ability of current models.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا