ﻻ يوجد ملخص باللغة العربية
The objective of the SPHERE Data Center is to optimize the scientific return of SPHERE at the VLT, by providing optimized reduction procedures, services to users and publicly available reduced data. This paper describes our motivation, the implementation of the service (partners, infrastructure and developments), services, description of the on-line data, and future developments. The SPHERE Data Center is operational and has already provided reduced data with a good reactivity to many observers. The first public reduced data have been made available in 2017. The SPHERE Data Center is gathering a strong expertise on SPHERE data and is in a very good position to propose new reduced data in the future, as well as improved reduction procedures.
We present the Vortex Image Processing (VIP) library, a python package dedicated to astronomical high-contrast imaging. Our package relies on the extensive python stack of scientific libraries and aims to provide a flexible framework for high-contras
The direct detection and characterization of planetary and substellar companions at small angular separations is a rapidly advancing field. Dedicated high-contrast imaging instruments deliver unprecedented sensitivity, enabling detailed insights into
In this work we explore the possibility of using Recurrence Quantification Analysis (RQA) in astronomical high-contrast imaging to statistically discriminate the signal of faint objects from speckle noise. To this end, we tested RQA on a sequence of
We discuss the results of a multi-wavelength differential imaging lab experiment with the High Contrast Imaging Testbed (HCIT) at the Jet Propulsion Laboratory. The HCIT combines a Lyot coronagraph with a Xinetics deformable mirror in a vacuum enviro
METIS is one of the three first-light instruments planned for the ELT, mainly dedicated to high contrast imaging in the mid-infrared. On the SPHERE high-contrast instrument currently installed at the VLT, we observe that one of the main contrast limi