ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of the Canting of Local Anisotropy Axes on Ground-State Properties of a Ferrimagnetic Chain with Regularly Alternating Ising and Heisenberg Spins

57   0   0.0 ( 0 )
 نشر من قبل Jordana Ferreira Torrico
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effect of the canting of local anisotropy axes on the ground-state phase diagram and magnetization of a ferrimagnetic chain with regularly alternating Ising and Heisenberg spins is exactly examined in an arbitrarily oriented magnetic field. It is shown that individual contributions of Ising and Heisenberg spins to the total magnetization basically depend on the spatial orientation of the magnetic field and the canting angle between two different local anisotropy axes of the Ising spins.



قيم البحث

اقرأ أيضاً

Thermal entanglement, magnetic and quadrupole moments properties of the mixed spin-1/2 and spin-1 Ising-Heisenberg model on a diamond chain are considered. Magnetization and quadrupole moment plateaus are observed for the antiferromagnetic couplings. Thermal negativity as a measure of quantum entanglement of the mixed spin system is calculated. Different behavior for the negativity is obtained for the various values of Heisenberg dipolar and quadrupole couplings. The intermediate plateau of the negativity has been observed at absence of the single-ion anisotropy and quadrupole interaction term. When dipolar and quadrupole couplings are equal there is a similar behavior of negativity and quadrupole moment.
We present the first experimental realization of an $S=2$ ferromagnetic-antiferromagnetic (F-AF) alternating chain in a new Mn-verdazyl complex [Mn(hfac)$_2$]$cdot$($o$-Py-V) [hfac=1,1,1,5,5,5-hexafluoroacetylacetonate; $o$-Py-V=3-(2-pyridyl)-1,5-dip henylverdazyl]. Through the $ab$ $initio$ molecular orbital calculation, magnetization, and ESR measurements, this compound is confirmed to form an $S=2$ F-AF alternating chain with Ising anisotropy below about 100 K. Furthermore, we find an anomalous change in magnetization at 1/4 of the saturation value, which is probably a manifestation of the quantum nature of the system.
We study the phase diagram of the anisotropic spin-1 Heisenberg chain with single ion anisotropy (D) using a ground-state fidelity approach. The ground-state fidelity and its corresponding susceptibility are calculated within the quantum renormalizat ion group scheme where we obtained the renormalization of fidelity preventing to calculate the ground state. Using this approach, the phase boundaries between the antiferromagnetic N{e}el, Haldane and large-D phases are obtained for the whole phase diagram, which justifies the application of quantum renormalization group to trace the symmetery protected topological phases. In addition, we present numerical exact diagonalization (Lanczos) results in, which we employ a recently introduced non-local order parameter to locate the transition from Haldane to large-D phase accurately.
108 - N. Amiri , A. Langari 2012
We present the zero temperature phase diagram of the bond alternating Ising chain in the presence of Dzyaloshinskii-Moriya interaction. An abrupt change in ground state fidelity is a signature of quantum phase transition. We obtain the renormalizatio n of fidelity in terms of quantum renormalization group without the need to know the ground state. We calculate the fidelity susceptibility and its scaling behavior close to quantum critical point (QCP) to find the critical exponent which governs the divergence of correlation length. The model consists of a long range antiferromagnetic order with nonzero staggered magnetization which is separated from a helical ordered phase at QCP. Our results state that the critical exponent is independent of the bond alternation parameter (lambda) while the maximum attainable helical order depends on lambda.
$LiHo_xY_{1-x}F_4$ is an insulating system where the magnetic Ho$^{3+}$ ions have an Ising character, and interact mainly through magnetic dipolar fields. We used the muon spin relaxation technique to study the nature of the ground state for samples with x=0.25, 0.12, 0.08, 0.045 and 0.018. In contrast with some previous works, we have not found any signature of canonical spin glass behavior down to $approx$15mK. Instead, below $approx$300mK we observed dynamic magnetism characterized by a single correlation time with a temperature independent fluctuation rate. We observed that this low temperature fluctuation rate increases with x up to 0.08, above which it levels off. The 300mK energy scale corresponds to the Ho3+ hyperfine interaction strength, suggesting that the hyperfine interaction may be intimately involved with the spin dynamics in this system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا