ﻻ يوجد ملخص باللغة العربية
In this paper the computational aspects of probability calculations for dynamical partial sum expressions are discussed. Such dynamical partial sum expressions have many important applications, and examples are provided in the fields of reliability, product quality assessment, and stochastic control. While these probability calculations are ostensibly of a high dimension, and consequently intractable in general, it is shown how a recursive integration methodology can be implemented to obtain exact calculations as a series of two-dimensional calculations. The computational aspects of the implementaion of this methodology, with the adoption of Fast Fourier Transforms, are discussed.
In an extension of Kendalls $tau$, Bergsma and Dassios (2014) introduced a covariance measure $tau^*$ for two ordinal random variables that vanishes if and only if the two variables are independent. For a sample of size $n$, a direct computation of $
Bayesian inference of Gibbs random fields (GRFs) is often referred to as a doubly intractable problem, since the likelihood function is intractable. The exploration of the posterior distribution of such models is typically carried out with a sophisti
In this work we introduce a reduced-rank algorithm for Gaussian process regression. Our numerical scheme converts a Gaussian process on a user-specified interval to its Karhunen-Lo`eve expansion, the $L^2$-optimal reduced-rank representation. Numeric
We study the class of state-space models and perform maximum likelihood estimation for the model parameters. We consider a stochastic approximation expectation-maximization (SAEM) algorithm to maximize the likelihood function with the novelty of usin
In this paper, we introduce efficient ensemble Markov Chain Monte Carlo (MCMC) sampling methods for Bayesian computations in the univariate stochastic volatility model. We compare the performance of our ensemble MCMC methods with an improved version