ﻻ يوجد ملخص باللغة العربية
This paper addresses testing of compressed structures, such as shells, that exhibit catastrophic buckling and notorious imperfection sensitivity. The central concept is the probing of a loaded structural specimen by a controlled lateral displacement to gain quantitative insight into its buckling behaviour and to measure the energy barrier against buckling. This can provide design information about a structures stiffness and robustness against buckling in terms of energy and force landscapes. Developments in this area are relatively new but have proceeded rapidly with encouraging progress. Recent experimental tests on uniformly compressed spherical shells, and axially loaded cylinders, show excellent agreement with theoretical solutions. The probing technique could be a valuable experimental procedure for testing prototype structures, but before it can be used a range of potential problems must be examined and solved. The probing response is highly nonlinear and a variety of complications can occur. Here, we make a careful assessment of unexpected limit points and bifurcations, that could accompany probing, causing complications and possibly even collapse of a test specimen. First, a limit point in the probe displacement (associated with a cusp instability and fold) can result in dynamic buckling as probing progresses, as demonstrated in the buckling of a spherical shell under volume control. Second, various types of bifurcations which can occur on the probing path which result in the probing response becoming unstable are also discussed. To overcome these problems, we outline the extra controls over the entire structure that may be needed to stabilize the response.
Dynamic buckling is addressed for complete elastic spherical shells subject to a rapidly applied step in external pressure. Insights from the perspective of nonlinear dynamics reveal essential mathematical features of the buckling phenomena. To captu
A new approach for image reconstruction in THz computed tomography (THz-CT) is presented. Based on a geometrical optics model containing the THz signal amplitude and phase, a novel algorithm for extracting an average phase from the measured THz signa
Topological defects such as cosmic strings may have been formed at early-universe phase transitions. Direct tests of this idea are impossible, but the mechanism can be elucidated by studying analogous processes in low-temperature condensed-matter sys
We introduce a detector that selectively probes the phononic excitations of a cold Bose gas. The detector is composed of a single impurity atom confined by a double-well potential, where the two lowest eigenstates of the impurity form an effective pr
In this work, the SLM-based phase retrieval system will be used to inspect carbon reinforced plastics samples (CFRP) under applying a thermal load. For this purpose, the system is used to capture a sequence of 8 spatially separated recording planes,