ترغب بنشر مسار تعليمي؟ اضغط هنا

Production of light hypernuclei with light-ion beams and targets

136   0   0.0 ( 0 )
 نشر من قبل Yelei Sun
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Ion-ion collisions at relativistic energies have been shown recently to be a promising technique for the production of hypernuclei. In this article, we further investigate the production of light $Lambda$ hypernuclei by use of a hybrid dynamical model, cascade-coalescence followed by Fermi breakup. The predictions are then compared with the available experimental data. The dependence of the production cross section upon the beam energy, beam mass number as well as different projectile-target combinations is investigated. In particular, we evaluate the yields and signal-over-background ratio in the invariant-mass spectrum for carbon projectiles impinging on hydrogen and carbon targets and various coincidence conditions in the experiment using the theoretical calculation as an input. It is found that comparing with carbon target, hydrogen target also leads to sizable hypernuclear yields, even for exotic species, and the hydrogen target could improve significantly signal-over-background ratio in some hypernuclear invariant mass studies.



قيم البحث

اقرأ أيضاً

152 - A. S. Botvina 2013
Within a dynamical and statistical approach we study the main regularities in production of hypernuclei coming from projectile and target residues in relativistic ion collisions. We demonstrate that yields of hypernuclei increase considerably above t he energy threshold for Lambda hyperons, and there is a saturation for yields of single hypernuclei with increasing the beam energy up to few TeV. Production of specific hypernuclei depend very much on the isotopic composition of the projectile, and this gives a chance to obtain exotic hypernuclei that may be difficult to reach in traditional hypernuclear experiments. Possibilities for the detection of such hypernuclei with planned and available relativistic ion facilities are discussed.
66 - U. Tippawan , S. Pomp , A. Atac 2005
Double-differential cross sections for light-ion (p, d, t, He-3 and alpha) production in oxygen, induced by 96 MeV neutrons are reported. Energy spectra are measured at eight laboratory angles from 20 degrees to 160 degrees in steps of 20 degrees. Pr ocedures for data taking and data reduction are presented. Deduced energy-differential and production cross sections are reported. Experimental cross sections are compared to theoretical reaction model calculations and experimental data at lower neutron energies in the literature. The measured proton data agree reasonably well with the results of the model calculations, whereas the agreement for the other particles is less convincing. The measured production cross sections for protons, deuterons, tritons and alpha particles support the trends suggested by data at lower energies.
81 - K. Sasaki , T. Inoue , M. Oka 2002
Nonmesonic weak decays of the A=4, and 5 hypernuclei are studied. The short range parts of the hyperon-nucleon weak interactions are described by the direct quark (DQ) weak transition potential, while the longer range interactions are given by the $p i$ and $K$ meson exchange processes. Virtual $Sigma$ mixings of the coherent type are found to give significant effects on the decay rates of $^4_{Lambda}{rm He}$. A large violation of the $Delta I = 1/2$ rule is predicted in the J=0 transition amplitudes.
In nuclear reactions of high energy one can simultaneously produce a lot of hypernuclei after the capture of hyperons by nuclear residues. We consider statistical disintegration of such hypernuclear systems and the connection of fragment production w ith the binding energies of hyperons. It is demonstrated that the hyperon binding energies can be effectively evaluated from the yields of different isotopes of hypernuclei. The double ratio method is suggested for this purpose. The advantage of this procedure is its universality and the possibility to involve many different isotopes. This method can also be applied for multi-strange nuclei, which binding energies were very difficult to measure in previous hypernuclear experiments.
Pioneering experiments on production of hypernuclei can be performed with nuclotron beams on fixed targets, and at the future NICA facility. The peripheral collisions of relativistic ions are very promising for searching mutli-strange and exotic hype rnuclei which are not easy accessible with other experimental methods. In these experiments one can also get information on the Equation of State of hyper-matter around nuclear saturation density at low and moderate temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا