ﻻ يوجد ملخص باللغة العربية
Nematic elastomers dramatically change their shape in response to diverse stimuli including light and heat. In this paper, we provide a systematic framework for the design of complex three dimensional shapes through the actuation of heterogeneously patterned nematic elastomer sheets. These sheets are composed of textit{nonisometric origami} building blocks which, when appropriately linked together, can actuate into a diverse array of three dimensional faceted shapes. We demonstrate both theoretically and experimentally that: 1) the nonisometric origami building blocks actuate in the predicted manner, 2) the integration of multiple building blocks leads to complex multi-stable, yet predictable, shapes, 3) we can bias the actuation experimentally to obtain a desired complex shape amongst the multi-stable shapes. We then show that this experimentally realized functionality enables a rich possible design landscape for actuation using nematic elastomers. We highlight this landscape through theoretical examples, which utilize large arrays of these building blocks to realize a desired three dimensional origami shape. In combination, these results amount to an engineering design principle, which we hope will provide a template for the application of nematic elastomers to emerging technologies.
Instabilities in thin elastic sheets, such as wrinkles, are of broad interest both from a fundamental viewpoint and also because of their potential for engineering applications. Nematic liquid crystal elastomers offer a new form of control of these i
We study the flat phase of nematic elastomer membranes with rotational symmetry spontaneously broken by in-plane nematic order. Such state is characterized by a vanishing elastic modulus for simple shear and soft transverse phonons. At harmonic level
In this paper, the two-dimensional pure bending of a hyperelastic substrate coated by a nematic liquid crystal elastomer (abbreviated as NLCE) is studied within the framework of nonlinear elasticity. The governing system, arising from the deformation
Traditional origami starts from flat surfaces, leading to crease patterns consisting of Euclidean vertices. However, Euclidean vertices are limited in their folding motions, are degenerate, and suffer from misfolding. Here we show how non-Euclidean 4
Origami, the ancient art of folding thin sheets, has attracted increasing attention for its practical value in diverse fields: architectural design, therapeutics, deployable space structures, medical stent design, antenna design and robotics. In this