ﻻ يوجد ملخص باللغة العربية
Number Decision Diagrams (NDD) provide a natural finite symbolic representation for regular set of integer vectors encoded as strings of digit vectors (least or most significant digit first). The convex hull of the set of vectors represented by a NDD is proved to be an effectively computable convex polyhedron.
In this paper, we first consider the subpath convex hull query problem: Given a simple path $pi$ of $n$ vertices, preprocess it so that the convex hull of any query subpath of $pi$ can be quickly obtained. Previously, Guibas, Hershberger, and Snoeyin
A subset $A$ of a Banach space is called Banach-Saks when every sequence in $A$ has a Ces{`a}ro convergent subsequence. Our interest here focusses on the following problem: is the convex hull of a Banach-Saks set again Banach-Saks? By means of a comb
Given a finite set of points $P subseteq mathbb{R}^d$, we would like to find a small subset $S subseteq P$ such that the convex hull of $S$ approximately contains $P$. More formally, every point in $P$ is within distance $epsilon$ from the convex hul
Let $K in R^d$ be a convex body, and assume that $L$ is a randomly rotated and shifted integer lattice. Let $K_L$ be the convex hull of the (random) points $K cap L$. The mean width $W(K_L)$ of $K_L$ is investigated. The asymptotic order of the mean
Let $x_1,ldots ,x_N$ be independent random points distributed according to an isotropic log-concave measure $mu $ on ${mathbb R}^n$, and consider the random polytope $$K_N:={rm conv}{ pm x_1,ldots ,pm x_N}.$$ We provide sharp estimates for the querma