ترغب بنشر مسار تعليمي؟ اضغط هنا

SENSE: A comparison of photon detection efficiency and optical crosstalk of various SiPM devices

115   0   0.0 ( 0 )
 نشر من قبل Andrii Nagai
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper describes a comparison of photon detection efficiency and optical crosstalk measurements performed by three partners: Geneva University, Catania Observatory and Nagoya University. The measurements were compared for three different SiPM devices with different active areas: from 9 $mm^2$ up to 93.6 $mm^2$ produced by Hamamatsu. The objective of this work is to establish the measurements and analysis procedures for calculating the main SiPM parameters and their precision. This work was done in the scope of SENSE project which aims to build roadmap for the last developments in field of sensors for low light level detection.



قيم البحث

اقرأ أيضاً

In this paper we report on the characterization of SiPM tiles developed for the R & D on the DUNE Photon Detection System. The tiles were produced by Fondazione Bruno Kessler (FBK) employing NUV-HD-SF SiPMs. Special emphasis is given on cryo-reliabil ity of the sensors, i.e. the stability of electric and mechanical properties after thermal cycles at room and 77K temperature. The characterization includes the determination of the I-V curve, a high sensitivity measurement of Dark Count Rate at different overvoltages, and correlated noise. The single p.e. sensitivity is measured as a function of the number of sensors connected to a single electronic channel, after amplification at 77K using a dedicated cold amplifier.
In this paper, we report on the photon emission of Silicon Photomultipliers (SiPMs) from avalanche pulses generated in dark condition, with the main objective of better understanding the associated systematics for next-generation, large area, SiPM-ba sed physics experiments. A new apparatus for spectral and imaging analysis was developed at TRIUMF and used to measure the light emitted by the two SiPMs considered as photo-sensor candidates for the nEXO neutrinoless double-beta decay experiment: one Fondazione Bruno Kessler (FBK) VUV-HD Low Field (LF) Low After Pulse (Low AP) (VUV-HD3) SiPM, and one Hamamatsu Photonics K.K. (HPK) VUV4 Multi-Pixel Photon Counter (MPPC). Spectral measurements of their light emission were taken with varying over-voltage in the wavelength range of 450--1020,nm. For the FBK VUV-HD3, at an over-voltage of $12.1pm1.0$,V, we measure a secondary photon yield (number of photons ($gamma$) emitted per charge carrier ($e^{-}$)) of $(4.04pm0.02)times 10^{-6}$ $gamma/e^{-}$. The emission spectrum of the FBK VUV-HD3 contains an interference pattern consistent with thin-film interference. Additionally, emission microscopy images (EMMIs) of the FBK VUV-HD3 show a small number of highly localized regions with increased light intensity (hotspots) randomly distributed over the SiPM surface area. For the HPK VUV4 MPPC, at an over-voltage of $10.7pm1.0$,V, we measure a secondary photon yield of $(8.71pm0.04)times 10^{-6}$ $gamma/e^{-}$. In contrast to the FBK VUV-HD3, the emission spectra of the HPK VUV4 dont show an interference pattern -- most likely due to a thinner surface coating. EMMIs of the HPK VUV4 also reveal a larger number of hotspots compared to the FBK VUV-HD3, especially in one of the corners of the device.
The possibility to use a mini-phoswich detector to identify ions in the region of Z ~ 10 is explored in the framework of the NUMEN project. The NUMEN program, aimed at the investigation of the nuclear matrix elements connected to the neutrinoless dou ble beta decay by means of double charge exchange nuclear reactions, foresees very high fluencies, which prevent the use of standard silicon as stop detectors. The need of reasonable radiation hardness, together with a total energy resolution around 2% and a high granularity, makes scintillators possible candidates. Promising results are obtained using an array of plastic + inorganic phoswich scintillators readout by means of Silicon Photo Multipliers.
We propose and study a method of optical crosstalk suppression for silicon photomultipliers (SiPMs) using optical filters. We demonstrate that attaching absorptive visible bandpass filters to the SiPM can substantially reduce the optical crosstalk. M easurements suggest that the absorption of near infrared light is important to achieve this suppression. The proposed technique can be easily applied to suppress the optical crosstalk in SiPMs in cases where filtering near infrared light is compatible with the application.
Silicon single-photon detectors (SPDs) are key devices for detecting single photons in the visible wavelength range. Photon detection efficiency (PDE) is one of the most important parameters of silicon SPDs, and increasing PDE is highly required for many applications. Here, we present a practical approach to increase PDE of silicon SPD with a monolithic integrated circuit of active quenching and active reset (AQAR). The AQAR integrated circuit is specifically designed for thick silicon single-photon avalanche diode (SPAD) with high breakdown voltage (250-450 V), and then fabricated via the process of high-voltage 0.35-$mu$m bipolarCMOS-DMOS. The AQAR integrated circuit implements the maximum transition voltage of ~ 68 V with 30 ns quenching time and 10 ns reset time, which can easily boost PDE to the upper limit by regulating the excess bias up to a high enough level. By using the AQAR integrated circuit, we design and characterize two SPDs with the SPADs disassembled from commercial products of single-photon counting modules (SPCMs). Compared with the original SPCMs, the PDE values are increased from 68.3% to 73.7% and 69.5% to 75.1% at 785 nm, respectively, with moderate increases of dark count rate and afterpulse probability. Our approach can effectively improve the performance of the practical applications requiring silicon SPDs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا