ﻻ يوجد ملخص باللغة العربية
We prove that a Shimura curve in the Siegel modular variety is not generically contained in the open Torelli locus as long as the rank of unitary part in its canonical Higgs bundle satisfies a numerical upper bound. As an application we show that the Coleman-Oort conjecture holds for Shimura curves associated to partial corestriction upon a suitable choice of parameters, which generalizes a construction due to Mumford.
Let $F$ be a totally real field in which $p$ is unramified. We study the Goren-Oort stratification of the special fibers of quaternionic Shimura varieties over a place above $p$. We show that each stratum is a $(mathbb{P}^1)^N$-bundle over other quat
Shimura curves on Shimura surfaces have been a candidate for counterexamples to the bounded negativity conjecture. We prove that they do not serve this purpose: there are only finitely many whose self-intersection number lies below a given bound. P
Let $F$ be a totally real field in which a fixed prime $p$ is inert, and let $E$ be a CM extension of $F$ in which $p$ splits. We fix two positive integers $r,s in mathbb N$. We investigate the Tate conjecture on the special fiber of $G(U(r,s) times
In this paper we construct infinitely many Shimura curves contained in the locus of Jacobians of genus four curves. All Jacobians in these families are ${mathbb Z}/3$ covers of varying elliptic curves that appear in a geometric construction of Pirola
We produce new combinatorial methods for approaching the tropical maximal rank conjecture, including inductive procedures for deducing new cases of the conjecture on graphs of increasing genus from any given case. Using explicit calculations in a ran