ترغب بنشر مسار تعليمي؟ اضغط هنا

Explicit formulas for infinitely many Shimura curves in genus 4

107   0   0.0 ( 0 )
 نشر من قبل Samuel Grushevsky
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we construct infinitely many Shimura curves contained in the locus of Jacobians of genus four curves. All Jacobians in these families are ${mathbb Z}/3$ covers of varying elliptic curves that appear in a geometric construction of Pirola, and include an example of a Shimura-Teichmuller curve that parameterizes Jacobians that are suitable ${mathbb Z}/6$ covers of ${mathbb P}^1$. We compute explicitly the period matrices of the Shimura curves we construct using the original construction of Shimura for moduli spaces of abelian varieties with automorphisms.



قيم البحث

اقرأ أيضاً

136 - Vincenzo Di Gennaro 2019
Let $C$ be an irreducible, reduced, non-degenerate curve, of arithmetic genus $g$ and degree $d$, in the projective space $mathbf P^4$ over the complex field. Assume that $C$ satisfies the following {it flag condition of type $(s,t)$}: {$C$ does not lie on any surface of degree $<s$, and on any hypersurface of degree $<t$}. Improving previous results, in the present paper we exhibit a Castelnuovo-Halphen type bound for $g$, under the assumption $sleq t^2-t$ and $dgg t$. In the range $t^2-2t+3leq sleq t^2-t$, $dgg t$, we are able to give some information on the extremal curves. They are arithmetically Cohen-Macaulay curves, and lie on a flag like $Ssubset F$, where $S$ is a surface of degree $s$, $F$ a hypersurface of degree $t$, $S$ is unique, and its general hyperplane section is a space extremal curve, not contained in any surface of degree $<t$. In the case $dequiv 0$ (modulo $s$), they are exactly the complete intersections of a surface $S$ as above, with a hypersurface. As a consequence of previous results, we get a bound for the speciality index of a curve satisfying a flag condition.
Shimura curves on Shimura surfaces have been a candidate for counterexamples to the bounded negativity conjecture. We prove that they do not serve this purpose: there are only finitely many whose self-intersection number lies below a given bound. P reviously, this result has been shown in [BHK+13] for compact Hilbert modular surfaces using the Bogomolov-Miyaoka-Yau inequality. Our approach uses equidistribution and works uniformly for all Shimura surfaces.
67 - Ke Chen , Xin Lu , Kang Zuo 2017
We prove that a Shimura curve in the Siegel modular variety is not generically contained in the open Torelli locus as long as the rank of unitary part in its canonical Higgs bundle satisfies a numerical upper bound. As an application we show that the Coleman-Oort conjecture holds for Shimura curves associated to partial corestriction upon a suitable choice of parameters, which generalizes a construction due to Mumford.
We give explicit computational algorithms to construct minimal degree (always $le 4$) ramified covers of $Prj^1$ for algebraic curves of genus 5 and 6. This completes the work of Schicho and Sevilla (who dealt with the $g le 4$ case) on constructing radical parametrisations of arbitrary genus $g$ curves. Zariski showed that this is impossible for the general curve of genus $ge 7$. We also construct minimal degree birational plane models and show how the existence of degree 6 plane models for genus 6 curves is related to the gonality and geometric type of a certain auxiliary surface.
We investigate the geometry of etale $4:1$ coverings of smooth complex genus 2 curves with the monodromy group isomorphic to the Klein four-group. There are two cases, isotropic and non-isotropic depending on the values of the Weil pairing restricted to the group defining the covering. We recall from our previous work cite{bo} the results concerning the non-isotropic case and fully describe the isotropic case. We show that the necessary information to construct the Klein coverings is encoded in the 6 points on $mathbb{P}^1$ defining the genus 2 curve. The main result of the paper is the fact that, in both cases the Prym map associated to these coverings is injective. Additionally, we provide a concrete description of the closure of the image of the Prym map inside the corresponding moduli space of polarised abelian varieties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا