ﻻ يوجد ملخص باللغة العربية
From 21 independent Baryon Acoustic Oscillation (BAO) measurements we obtain the following sum of masses of active Dirac or Majorana neutrinos: $sum m_ u = 0.711 - 0.335 cdot delta h + 0.050 cdot delta b pm 0.063 textrm{ eV,}$ where $delta h equiv (h - 0.678) / 0.009$ and $delta b equiv (Omega_b h^2 - 0.02226) / 0.00023$. This result may be combined with independent measurements that constrain the parameters $sum m_ u$, $h$, and $Omega_b h^2$. For $delta h = pm 1$ and $delta b = pm 1$, we obtain $m_ u < 0.43$ eV at 95% confidence.
In the paper, we consider two models in which dark energy is coupled with either dust matter or dark matter, and discuss the conditions that allow more time for structure formation to take place at high redshifts. These models are expected to have a
We derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) and Type Ia supernova (SN) data. We take advantage of high-
We revisit the current experimental bounds on fourth-generation Majorana neutrino masses, including the effects of right handed neutrinos. Current bounds from LEPII are significantly altered by a global analysis. We show that the current bounds on fo
Anisotropic measurements of the Baryon Acoustic Oscillation (BAO) feature within a galaxy survey enable joint inference about the Hubble parameter $H(z)$ and angular diameter distance $D_A(z)$. These measurements are typically obtained from moments o
The weak lensing (WL) distortions of distant galaxy images are sensitive to neutrino masses by probing the suppression effect on clustering strengths of total matter in large-scale structure. We use the latest measurement of WL correlations, the CFHT