ﻻ يوجد ملخص باللغة العربية
In this paper we generalize the concept of uniquely $K_r$-saturated graphs to hypergraphs. Let $K_r^{(k)}$ denote the complete $k$-uniform hypergraph on $r$ vertices. For integers $k,r,n$ such that $2le k <r<n$, a $k$-uniform hypergraph $H$ with $n$ vertices is uniquely $K_r^{(k)}$-saturated if $H$ does not contain $K_r^{(k)}$ but adding to $H$ any $k$-set that is not a hyperedge of $H$ results in exactly one copy of $K_r^{(k)}$. Among uniquely $K_r^{(k)}$-saturated hypergraphs, the interesting ones are the primitive ones that do not have a dominating vertex---a vertex belonging to all possible ${n-1choose k-1}$ edges. Translating the concept to the complements of these hypergraphs, we obtain a natural restriction of $tau$-critical hypergraphs: a hypergraph $H$ is uniquely $tau$-critical if for every edge $e$, $tau(H-e)=tau(H)-1$ and $H-e$ has a unique transversal of size $tau(H)-1$. We have two constructions for primitive uniquely $K_r^{(k)}$-saturated hypergraphs. One shows that for $k$ and $r$ where $4le k<rle 2k-3$, there exists such a hypergraph for every $n>r$. This is in contrast to the case $k=2$ and $r=3$ where only the Moore graphs of diameter two have this property. Our other construction keeps $n-r$ fixed; in this case we show that for any fixed $kge 2$ there can only be finitely many examples. We give a range for $n$ where these hypergraphs exist. For $n-r=1$ the range is completely determined: $k+1le n le {(k+2)^2over 4}$. For larger values of $n-r$ the upper end of our range reaches approximately half of its upper bound. The lower end depends on the chromatic number of certain Johnson graphs.
Let $Y_{3,2}$ be the $3$-uniform hypergraph with two edges intersecting in two vertices. Our main result is that any $n$-vertex 3-uniform hypergraph with at least $binom{n}{3} - binom{n-m+1}{3} + o(n^3)$ edges contains a collection of $m$ vertex-disj
The graph entropy describes the structural information of graph. Motivated by the definition of graph entropy in general graphs, the graph entropy of hypergraphs based on Laplacian degree are defined. Some results on graph entropy of simple graphs ar
Let $chi_k(G)$ denote the minimum number of colors needed to color the edges of a graph $G$ in a way that the subgraph spanned by the edges of each color has all degrees congruent to $1 pmod k$. Scott [{em Discrete Math. 175}, 1-3 (1997), 289--291] p
Halin showed that every edge minimal, k-vertex connected graph has a vertex of degree k. In this note, we prove the analogue to Halins theorem for edge-minimal, k-edge-connected graphs. We show there are two vertices of degree k in every edge-minimal, k-edge-connected graph.
A $k$-matching $M$ of a graph $G=(V,E)$ is a subset $Msubseteq E$ such that each connected component in the subgraph $F = (V,M)$ of $G$ is either a single-vertex graph or $k$-regular, i.e., each vertex has degree $k$. In this contribution, we are int