ترغب بنشر مسار تعليمي؟ اضغط هنا

Apparatus for measuring the uniformity of the optical transmittance of a semispherical surface at normal incidence

355   0   0.0 ( 0 )
 نشر من قبل Shenghao Wang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we build an apparatus for measuring the optical transmittance and its uniformity for a semispherical surface at normal incidence; the system is primarily comprised of a traditional double-beam photometric framework and a novel custom-made mechanical structure with multidimensional degrees of freedom. During the measurement process, a key aligning step is adopted to guarantee that the center point of the semispherical surface stands still in the light beam while scanning the hemispherical optical element point by point around the horizontal and vertical axes, which ensures that the laser beam is always normally incident onto the surface of the hemisphere. The experimental results show that the uniformity of the optical transmittance for a semispherical optical glass can be successfully characterized by the system, with a three-cycle repeatability error of 0.026% being demonstrated. Our system solves the problem of traditional spectrophotometers when measuring the spectral property of a hemispherical surface and thus can be popularized in similar applications.

قيم البحث

اقرأ أيضاً

We observed quantum reflection of ultracold atoms from the attractive potential of a solid surface. Extremely dilute Bose-Einstein condensates of ^{23}Na, with peak density 10^{11}-10^{12}atoms/cm^3, confined in a weak gravito-magnetic trap were norm ally incident on a silicon surface. Reflection probabilities of up to 20 % were observed for incident velocities of 1-8 mm/s. The velocity dependence agrees qualitatively with the prediction for quantum reflection from the attractive Casimir-Polder potential. Atoms confined in a harmonic trap divided in half by a solid surface exhibited extended lifetime due to quantum reflection from the surface, implying a reflection probability above 50 %.
80 - C. Abel , N. Ayres , G. Bison 2018
The neutron and its hypothetical mirror counterpart, a sterile state degenerate in mass, could spontaneously mix in a process much faster than the neutron $beta$-decay. Two groups have performed a series of experiments in search of neutron - mirror-n eutron ($n-n$) oscillations. They reported no evidence, thereby setting stringent limits on the oscillation time $tau_{nn}$. Later, these data sets have been further analyzed by Berezhiani et al.(2009-2017), and signals, compatible with $n-n$ oscillations in the presence of mirror magnetic fields, have been reported. The Neutron Electric Dipole Moment Collaboration based at the Paul Scherrer Institute performed a new series of experiments to further test these signals. In this paper, we describe and motivate our choice of run configurations with an optimal filling time of $29~$s, storage times of $180~$s and $380~$s, and applied magnetic fields of $10~mu$T and $20~mu$T. The choice of these run configurations ensures a reliable overlap in settings with the previous efforts and also improves the sensitivity to test the signals. We also elaborate on the technique of normalizing the neutron counts, making such a counting experiment at the ultra-cold neutron source at the Paul Scherrer Institute possible. Furthermore, the magnetic field characterization to meet the requirements of this $n-n$ oscillation search is demonstrated. Finally, we show that this effort has a statistical sensitivity comparable to the current leading constraints for $n-n$ oscillations.
339 - Franck Bielsa 2009
In this paper we present a review of the existing data on interferential mirror birefringence. We also report new measurements of two sets of mirrors that confirm that mirror phase retardation per reflection decreases when mirror reflectivity increas es. We finally developed a computational code to calculate the expected phase retardation per reflection as a function of the total number of layers constituting the mirror. Different cases have been studied and we have compared computational results with the trend of the experimental data. Our study indicates that the origin of the mirror intrinsic birefringence can be ascribed to the reflecting layers close to the substrate.
The refraction of space-time (ST) wave packets offers many fascinating surprises with respect to conventional pulsed beams. In paper (I) of this sequence, we described theoretically the refraction of all families of ST wave packets at normal and obli que incidence at a planar interface between two non-dispersive, homogeneous, isotropic dielectrics. Here, in paper (II) of this sequence, we present experimental verification of the novel refractive phenomena predicted for `baseband ST wave packets upon normal incidence on a planar interface. Specifically, we observe group-velocity invariance, normal and anomalous refraction, and group-velocity inversion leading to group-delay cancellation. These phenomena are verified in a set of optical materials with refractive indices ranging from 1.38 to 1.76, including MgF$_2$, fused silica, BK7 glass, and sapphire. We also provide a geometrical representation of the physics associated with anomalous refraction in terms of the dynamics of the spectral support domain for ST wave packets on the surface of the light-cone.
In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part per million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam-monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cerenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا