ترغب بنشر مسار تعليمي؟ اضغط هنا

Revealing the correlation between real-space structure and chiral magnetic order at the atomic scale

232   0   0.0 ( 0 )
 نشر من قبل Alexander Khajetoorians
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We image simultaneously the geometric, electronic and magnetic structure of a buckled iron bilayer film that exhibits chiral magnetic order. We achieve this by combining spin-polarized scanning tunneling microscopy and magnetic exchange force microscopy (SPEX), to independently characterize the geometric as well as the electronic and magnetic structure of non-flat surfaces. This new SPEX imaging technique reveals the geometric height corrugation of the reconstruction lines resulting from strong strain relaxation in the bilayer, enabling the decomposition of the real-space from the eletronic structure at the atomic level, and the correlation with the resultant spin spiral ground state. By additionally utilizing adatom manipulation, we reveal the chiral magnetic ground state of portions of the unit cell that were not previously imaged with SP-STM alone. Using density functional theory (DFT), we investigate the structural and electronic properties of the reconstructed bilayer and identify the favorable stoichiometry regime in agreement with our experimental result.



قيم البحث

اقرأ أيضاً

Storing and accessing information in atomic-scale magnets requires magnetic imaging techniques with single-atom resolution. Here, we show simultaneous detection of the spin-polarization and exchange force, with or without the flow of current, with a new method, which combines scanning tunneling microscopy and non-contact atomic force microscopy. To demonstrate the application of this new method, we characterize the prototypical nano-skyrmion lattice formed on a monolayer of Fe/Ir(111). We resolve the square magnetic lattice by employing magnetic exchange force microscopy, demonstrating its applicability to non-collinear magnetic structures, for the first time. Utilizing distance-dependent force and current spectroscopy, we quantify the exchange forces in comparison to the spin-polarization. For strongly spin-polarized tips, we distinguish different signs of the exchange force which we suggest arises from a change in exchange mechanisms between the probe and a skyrmion. This new approach may enable both non-perturbative readout combined with writing by current-driven reversal of atomic-scale magnets.
On the SiC(0001) surface (the silicon face of SiC), epitaxial graphene is obtained by sublimation of Si from the substrate. The graphene film is separated from the bulk by a carbon-rich interface layer (hereafter called the buffer layer) which in par t covalently binds to the substrate. Its structural and electronic properties are currently under debate. In the present work we report scanning tunneling microscopy (STM) studies of the buffer layer and of quasi-free-standing monolayer graphene (QFMLG) that is obtained by decoupling the buffer layer from the SiC(0001) substrate by means of hydrogen intercalation. Atomic resolution STM images of the buffer layer reveal that, within the periodic structural corrugation of this interfacial layer, the arrangement of atoms is topologically identical to that of graphene. After hydrogen intercalation, we show that the resulting QFMLG is relieved from the periodic corrugation and presents no detectable defect sites.
Spin polarized scanning tunneling microscopy is used to directly image topological magnetic textures in thin films of MnGe, and to correlate the magnetism with structure probed at the atomic-scale. Our images indicate helical stripe domains, each cha racterized by a single wavevector Q, and their associated helimagnetic domain walls, in contrast to the 3Q magnetic state seen in the bulk. Combining our surface measurements with micromagnetic modeling, we deduce the three-dimensional orientation of the helical wavevectors and gain detailed understanding of the structure of individual domain walls and their intersections. We find that three helical domains meet in two distinct ways to produce either a target-like or a pi-like topological spin texture, and correlate these with local strain on the surface. We further show that the target-like texture can be reversibly manipulated through either current/voltage pulsing or applied magnetic field, a promising step toward future applications.
The past years have seen rapid progress in the classification of topological materials. These diagnostical methods are increasingly getting explored in the pertinent context of magnetic structures. We report on a general class of electronic configura tions within a set of anti-ferromagnetic-compatible space groups that are necessarily topological. Interestingly, we find a systematic correspondence between these anti-ferromagnetic phases to necessarily nontrivial topological ferro/ferrimagnetic counterparts that are readily obtained through physically motivated perturbations. Addressing the exhaustive list of magnetic space groups in which this mechanism occurs, we also verify its presence on planes in 3D systems that were deemed trivial in existing classification schemes. This leads to the formulation of the concept of subdimensional topologies, featuring non-triviality within part of the system that coexists with stable Weyl points away from these planes, thereby uncovering novel topological materials in the full 3D sense that have readily observable features in their bulk and surface spectrum.
The non-centrosymmetric semiconductor BiTeI exhibits two distinct surface terminations that support spin-split Rashba surface states. Their ambipolarity can be exploited for creating spin-polarized $p$-$n$ junctions at the boundaries between domains with different surface terminations. We use scanning tunneling microscopy/spectroscopy (STM/STS) to locate such junctions and investigate their atomic and electronic properties. The Te- and I-terminated surfaces are identified owing to their distinct chemical reactivity, and an apparent height mismatch of electronic origin. The Rashba surface states are revealed in the STS spectra by the onset of a van Hove singularity at the band edge. Eventually, an electronic depletion is found on interfacial Te atoms, consistent with the formation of a space charge area in typical $p$-$n$ junctions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا