ترغب بنشر مسار تعليمي؟ اضغط هنا

Atomic scale visualization of topological spin textures in the chiral magnet MnGe

136   0   0.0 ( 0 )
 نشر من قبل Jay Gupta
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin polarized scanning tunneling microscopy is used to directly image topological magnetic textures in thin films of MnGe, and to correlate the magnetism with structure probed at the atomic-scale. Our images indicate helical stripe domains, each characterized by a single wavevector Q, and their associated helimagnetic domain walls, in contrast to the 3Q magnetic state seen in the bulk. Combining our surface measurements with micromagnetic modeling, we deduce the three-dimensional orientation of the helical wavevectors and gain detailed understanding of the structure of individual domain walls and their intersections. We find that three helical domains meet in two distinct ways to produce either a target-like or a pi-like topological spin texture, and correlate these with local strain on the surface. We further show that the target-like texture can be reversibly manipulated through either current/voltage pulsing or applied magnetic field, a promising step toward future applications.

قيم البحث

اقرأ أيضاً

Merons are nontrivial topological spin textures highly relevant for many phenomena in solid state physics. Despite their importance, direct observation of such vortex quasiparticles is scarce and has been limited to a few complex materials. Here we s how the emergence of merons and antimerons in recently discovered two-dimensional (2D) CrCl3 at zero magnetic field. We show their entire evolution from pair creation, their diffusion over metastable domain walls, and collision leading to large magnetic monodomains. Both quasiparticles are stabilized spontaneously during cooling at regions where in-plane magnetic frustration takes place. Their dynamics is determined by the interplay between the strong in-plane dipolar interactions and the weak out-of-plane magnetic anisotropy stabilising a vortex core within a radius of 8-10 nm. Our results push the boundary to what is currently known about non-trivial spin structures in 2D magnets and open exciting opportunities to control magnetic domains via topological quasiparticles.
Controlling magnetism in low dimensional materials is essential for designing devices that have feature sizes comparable to several critical length scales that exploit functional spin textures, allowing the realization of low-power spintronic and mag neto-electric hardware. [1] Unlike conventional covalently-bonded bulk materials, van der Waals (vdW)-bonded layered magnets [2-4] offer exceptional degrees of freedom for engineering spin textures. [5] However, their structural instability has hindered microscopic studies and manipulations. Here, we demonstrate nanoscale structural control in the layered magnet CrSBr creating novel spin textures down to the atomic scale. We show that it is possible to drive a local structural phase transformation using an electron beam that locally exchanges the bondings in different directions, effectively creating regions that have vertical vdW layers embedded within the horizontally vdW bonded exfoliated flakes. We calculate that the newly formed 2D structure is ferromagnetically ordered in-plane with an energy gap in the visible spectrum, and weak antiferromagnetism between the planes. Our study lays the groundwork for designing and studying novel spin textures and related quantum magnetic phases down to single-atom sensitivity, potentially to create on-demand spin Hamiltonians probing fundamental concepts in physics, [6-10] and for realizing high-performance spintronic, magneto-electric and topological devices with nanometer feature sizes. [11,12]
80 - Fan Zhang , Zhe Wang , Lixuan Liu 2021
Domain boundaries in ferroelectric materials exhibit rich and diverse physical properties distinct from their parent materials and have been proposed for novel applications in nanoelectronics and quantum information technology. Due to their complexit y and diversity, the internal atomic and electronic structure of domain boundaries that governs the electronic properties as well as the kinetics of domain switching remains far from being elucidated. By using scanning tunneling microscopy and spectroscopy (STM/S) combined with density functional theory (DFT) calculations, we directly visualize the atomic structure of domain boundaries in two-dimensional (2D) ferroelectric beta In2Se3 down to the monolayer limit and reveal a double-barrier energy potential of the 60{deg} tail to tail domain boundaries for the first time. We further controllably manipulate the domain boundaries with atomic precision by STM and show that the movements of domain boundaries can be driven by the electric field from an STM tip and proceed by the collective shifting of atoms at the domain boundaries. The results will deepen our understanding of domain boundaries in 2D ferroelectric materials and stimulate innovative applications of these materials.
Skyrmions are topologically protected, two-dimensional, localized hedgehogs and whorls of spin. Originally invented as a concept in field theory for nuclear interactions, skyrmions are central to a wide range of phenomena in condensed matter. Their r ealization at room temperature (RT) in magnetic multilayers has generated considerable interest, fueled by technological prospects and the access granted to fundamental questions. The interaction of skyrmions with charge carriers gives rise to exotic electrodynamics, such as the topological Hall effect (THE), the Hall response to an emergent magnetic field, a manifestation of the skyrmion Berry-phase. The proposal that THE can be used to detect skyrmions needs to be tested quantitatively. For that it is imperative to develop comprehensive understanding of skyrmions and other chiral textures, and their electrical fingerprint. Here, using Hall transport and magnetic imaging, we track the evolution of magnetic textures and their THE signature in a technologically viable multilayer film as a function of temperature ($T$) and out-of-plane applied magnetic field ($H$). We show that topological Hall resistivity ($rho_mathrm{TH}$) scales with the density of isolated skyrmions ($n_mathrm{sk}$) over a wide range of $T$, confirming the impact of the skyrmion Berry-phase on electronic transport. We find that at higher $n_mathrm{sk}$ skyrmions cluster into worms which carry considerable topological charge, unlike topologically-trivial spin spirals. While we establish a qualitative agreement between $rho_mathrm{TH}(H,T)$ and areal density of topological charge $n_mathrm{T}(H,T)$, our detailed quantitative analysis shows a much larger $rho_mathrm{TH}$ than the prevailing theory predicts for observed $n_mathrm{T}$.
183 - Safe Khan , Oscar Lee , Troy Dion 2021
Topologically protected nanoscale spin textures, known as magnetic skyrmions, possess particle-like properties and feature emergent magnetism effects. In bulk cubic heli-magnets, distinct skyrmion resonant modes are already identified using a techniq ue like ferromagnetic resonance in spintronics. However, direct light-matter coupling between microwave photons and skyrmion resonance modes has not been demonstrated yet. Utilising two distinct cavity systems, we realise to observe a direct interaction between the cavity resonant mode and two resonant skyrmion modes, the counter-clockwise gyration and breathing modes, in bulk Cu$_2$OSeO$_3$. For both resonant modes, we find the largest coupling strength at 57 K indicated by an enhancement of the cavity linewidth at the degeneracy point. We study the effective coupling strength as a function of temperature within the expected skyrmion phase. We attribute the maximum in effective coupling strength to the presence of a large number of skyrmions, and correspondingly to a completely stable skyrmion lattice. Our experimental findings indicate that the coupling between photons and resonant modes of magnetic skyrmions depends on the relative density of these topological particles instead of the pure spin number in the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا