ترغب بنشر مسار تعليمي؟ اضغط هنا

FRW and domain walls in higher spin gravity

66   0   0.0 ( 0 )
 نشر من قبل Ergin Sezgin
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present exact solutions to Vasilievs bosonic higher spin gravity equations in four dimensions with positive and negative cosmological constant that admit an interpretation in terms of domain walls, quasi-instantons and Friedman-Robertson-Walker (FRW) backgrounds. Their isometry algebras are infinite dimensional higher-spin extensions of spacetime isometries generated by six Killing vectors. The solutions presented are obtained by using a method of holomorphic factorization in noncommutative twistor space and gauge functions. In interpreting the solutions in terms of Fronsdal-type fields in spacetime, a field-dependent higher spin transformation is required, which is implemented at leading order. To this order, the scalar field solves Klein-Gordon equation with conformal mass in (anti) de Sitter space. We interpret the FRW solution with de Sitter asymptotics in the context of inflationary cosmology and we expect that the domain wall and FRW solutions are associated with spontaneously broken scaling symmetries in their holographic description. We observe that the factorization method provides a convenient framework for setting up a perturbation theory around the exact solutions, and we propose that the nonlinear completion of particle excitations over FRW and domain wall solutions requires black hole-like states.

قيم البحث

اقرأ أيضاً

We consider a class of higher order corrections with arbitrary power $n$ of the curvature tensor to the standard gravity action in arbitrary space-time dimension $D$. The corrections are in the form of Euler densities and are unique at each $n$ and $ D$. We present a generating functional and an explicit form of the corresponding conserved energy-momentum tensors. The case of conformally flat metrics is discussed in detail. We show that this class of corrections allows for domain wall solutions since, despite the presence of higher powers of the curvature tensor, the singularity structure at the wall is of the same type as in the standard gravity. However, models with higher order corrections have larger set of domain wall solutions and the existence of these solutions no longer depends on the presence of cosmological constants. We find for example that the Randall-Sundrum scenario can be realized without any need for bulk and/or brane cosmological constant.
We propose an approach to compute one-loop corrections to the four-point amplitude in the higher spin gravities that are holographically dual to free $O(N)$, $U(N)$ and $USp(N)$ vector models. We compute the double-particle cut of one-loop diagrams b y expressing them in terms of tree level four-point amplitudes. We then discuss how the remaining contributions to the complete one-loop diagram can be computed. With certain assumptions we find nontrivial evidence for the shift in the identification of the bulk coupling constant and $1/N$ in accordance with the previously established result for the vacuum energy.
We find a consistent set of equations of motion and constraints for massive higher-spin fluctuations in a gravitational background, required of certain characteristic properties but more general than constant curvature space. Of particular interest a mong such geometries is a thick domain wall--a smooth version of the Randall-Sundrum metric. Apart from the graviton zero mode, the brane accommodates quasi-bound massive states of higher spin contingent on the bulk mass. We estimate the mass and lifetime of these higher-spin resonances, which may appear as metastable dark matter in a braneworld universe.
We study configurations of intersecting domain walls in a Wess-Zumino model with three vacua. We introduce a volume-preserving flow and show that its static solutions are configurations of intersecting domain walls that form double bubbles, that is, minimal area surfaces which enclose and separate two prescribed volumes. To illustrate this field theory approach to double bubbles, we use domain walls to reconstruct the phase diagram for double bubbles in the flat square two-torus and also construct all known examples of double bubbles in the flat cubic three-torus.
We study the Thermo-field realization of the duality between the Rindler-AdS higher spin theory and $O(N)$ vector theory. The CFT represents a decoupled pair of free $O(N)$ vector field theories. It is shown how this decoupled domain CFT is capable o f generating the connected Rindler-AdS background with the full set of Higher Spin fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا