ترغب بنشر مسار تعليمي؟ اضغط هنا

On one loop corrections in higher spin gravity

63   0   0.0 ( 0 )
 نشر من قبل Evgeny Skvortsov D
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose an approach to compute one-loop corrections to the four-point amplitude in the higher spin gravities that are holographically dual to free $O(N)$, $U(N)$ and $USp(N)$ vector models. We compute the double-particle cut of one-loop diagrams by expressing them in terms of tree level four-point amplitudes. We then discuss how the remaining contributions to the complete one-loop diagram can be computed. With certain assumptions we find nontrivial evidence for the shift in the identification of the bulk coupling constant and $1/N$ in accordance with the previously established result for the vacuum energy.

قيم البحث

اقرأ أيضاً

The effective action of the recently proposed vector Galileon theory is considered. Using the background field method, we obtain the one-loop correction to the propagator of the Proca field from vector Galileon self-interactions. Contrary to the so-c alled scalar Galileon interactions, the two-point function of the vector field gets renormalized at the one-loop level, indicating that there is no non-renormalization theorem in the vector Galileon theory. Using dimensional regularization, we remove the divergences and obtain the counterterms of the theory. The finite term is analytically calculated, which modifies the propagator and the mass term and generates some new terms also.
We study the spectrum of pure massless higher spin theories in $AdS_3$. The light spectrum is given by a tower of massless particles of spin $s=2,cdots,N$ and their multi-particles states. Their contribution to the torus partition function organises into the vacuum character of the ${cal W}_N$ algebra. Modular invariance puts constraints on the heavy spectrum of the theory, and in particular leads to negative norm states, which would be inconsistent with unitarity. This negativity can be cured by including additional light states, below the black hole threshold but whose mass grows with the central charge. We show that these states can be interpreted as conical defects with deficit angle $2pi(1-1/M)$. Unitarity allows the inclusion of such defects into the path integral provided $M geq N$.
The dimensionful nature of the coupling in the Einstein-Hilbert action in four dimensions implies that the theory is non-renormalizable; explicit calculation shows that beginning at two loop order, divergences arise that cannot be removed by renormal ization without introducing new terms in the classical action. It has been shown that, by use of a Lagrange multiplier field to ensure that the classical equation of motion is satisfied in the path integral, radiative effects can be restricted to one loop order. We show that by use of such Lagrange multiplier fields, the Einstein-Hilbert action can be quantized without the occurrence of non-renormalizable divergences. We then apply this mechanism to a model in which there is in addition to the Einstein-Hilbert action, a fully covariant action for a self-interacting scalar field coupled to the metric. It proves possible to restrict loop diagrams involving internal lines involving the metric to one-loop order; diagrams in which the scalar field propagates occur at arbitrary high order in the loop expansion. This model also can be shown to be renormalizable. Incorporating spinor and vector fields in the same way as scalar fields is feasible, and so a fully covariant Standard Model with a dynamical metric field can also be shown to be renormalizable
98 - I. Jack 2020
We compute the one-loop beta-functions for renormalisable quantum gravity coupled to scalars using the co-ordinate space approach and generalised Schwinger De Witt technique. We resolve apparent contradictions with the corresponding momentum space ca lculations, and indicate how our results also resolve similar inconsistencies in the fermion case.
99 - J. M. Drummond , H. Paul 2019
We consider $alpha$ corrections to the one-loop four-point correlator of the stress-tensor multiplet in $mathcal{N}=4$ super Yang-Mills at order $1/N^4$. Holographically, this is dual to string corrections of the one-loop supergravity amplitude on Ad S$_5times$S$^5$. While this correlator has been considered in Mellin space before, we derive the corresponding position space results, gaining new insights into the analytic structure of AdS loop-amplitudes. Most notably, the presence of a transcendental weight three function involving new singularities is required, which has not appeared in the context of AdS amplitudes before. We thereby confirm the structure of string corrected one-loop Mellin amplitudes, and also provide new explicit results at orders in $alpha$ not considered before.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا