ﻻ يوجد ملخص باللغة العربية
A quasi-Gray code of dimension $n$ and length $ell$ over an alphabet $Sigma$ is a sequence of distinct words $w_1,w_2,dots,w_ell$ from $Sigma^n$ such that any two consecutive words differ in at most $c$ coordinates, for some fixed constant $c>0$. In this paper we are interested in the read and write complexity of quasi-Gray codes in the bit-probe model, where we measure the number of symbols read and written in order to transform any word $w_i$ into its successor $w_{i+1}$. We present construction of quasi-Gray codes of dimension $n$ and length $3^n$ over the ternary alphabet ${0,1,2}$ with worst-case read complexity $O(log n)$ and write complexity $2$. This generalizes to arbitrary odd-size alphabets. For the binary alphabet, we present quasi-Gray codes of dimension $n$ and length at least $2^n - 20n$ with worst-case read complexity $6+log n$ and write complexity $2$. This complements a recent result by Raskin [Raskin 17] who shows that any quasi-Gray code over binary alphabet of length $2^n$ has read complexity $Omega(n)$. Our results significantly improve on previously known constructions and for the odd-size alphabets we break the $Omega(n)$ worst-case barrier for space-optimal (non-redundant) quasi-Gray codes with constant number of writes. We obtain our results via a novel application of algebraic tools together with the principles of catalytic computation [Buhrman et al. 14, Ben-Or and Cleve 92, Barrington 89, Coppersmith and Grossman 75].
Let $P = {p(i)}$ be a measure of strictly positive probabilities on the set of nonnegative integers. Although the countable number of inputs prevents usage of the Huffman algorithm, there are nontrivial $P$ for which known methods find a source code
Locally recoverable (LRC) codes have recently been a focus point of research in coding theory due to their theoretical appeal and applications in distributed storage systems. In an LRC code, any erased symbol of a codeword can be recovered by accessi
This paper focuses on error-correcting codes that can handle a predefined set of specific error patterns. The need for such codes arises in many settings of practical interest, including wireless communication and flash memory systems. In many such s
Zero-error single-channel source coding has been studied extensively over the past decades. Its natural multi-channel generalization is however not well investigated. While the special case with multiple symmetric-alphabet channels was studied a deca
A Maximum Distance Separable code over an alphabet $F$ is defined via an encoding function $C:F^k rightarrow F^n$ that allows to retrieve a message $m in F^k$ from the codeword $C(m)$ even after erasing any $n-k$ of its symbols. The minimum possible