ترغب بنشر مسار تعليمي؟ اضغط هنا

Extreme reductions of entropy in an electronic double dot

87   0   0.0 ( 0 )
 نشر من قبل Shilpi Singh
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally study negative fluctuations of stochastic entropy production in an electronic double dot operating in nonequilibrium steady-state conditions. We record millions of random electron tunneling events at different bias points, thus collecting extensive statistics. We show that for all bias voltages the experimental average values of the minima of stochastic entropy production lie above $-k_B$, where $k_B$ is the Boltzmann constant, in agreement with recent theoretical predictions for nonequilibrium steady states. Furthermore, we also demonstrate that the experimental cumulative distribution of the entropy production minima is bounded, at all times and for all bias voltages, by a universal expression predicted by the theory. We also extend our theory by deriving a general bound for the average value of the maximum heat absorbed by a mesoscopic system from the environment and compare this result with experimental data. Finally, we show by numerical simulations that these results are not necessarily valid under non-stationary conditions.

قيم البحث

اقرأ أيضاً

We present a stochastic thermodynamics analysis of an electron-spin-resonance pumped quantum dot device in the Coulomb-blocked regime, where a pure spin current is generated without an accompanying net charge current. Based on a generalized quantum m aster equation beyond secular approximation, quantum coherences are accounted for in terms of an effective average spin in the Floquet basis. Elegantly, this effective spin undergoes a precession about an effective magnetic field, which originates from the non-secular treatment and energy renormalization. It is shown that the interaction between effective spin and effective magnetic field may have the dominant roles to play in both energy transport and irreversible entropy production. In the stationary limit, the energy and entropy balance relations are also established based on the theory of counting statistics.
We investigate theoretically the features of the Majorana hallmark in the presence of Coulomb repulsion between two quantum dots describing a spinless Aharonov-Bohm-like interferometer, where one of the dots is strongly coupled to a Kitaev wire withi n the topological phase. Such a system has been originally proposed without Coulomb interaction in J. of Appl. Phys. 116, 173701 (2014). Our findings reveal that for dots in resonance, the ratio between the strength of Coulomb repulsion and the dot-wire coupling changes the width of the Majorana zero-bias peak for both Fano regimes studied, indicating thus that the electronic interdots correlation influences the Majorana state lifetime in the dot hybridized with the wire. Moreover, for the off-resonance case, the swap between the energy levels of the dots also modifies the width of the Majorana peak, which does not happen for the noninteracting case. The results obtained here can guide experimentalists that pursuit a way of revealing Majorana signatures.
We study the reduction in total entropy, and associated conversion of environmental heat into work, arising from the coupling and decoupling of two systems followed by processing determined by suitable mutual feedback. The scheme is based on the acti ons of Maxwells demon, namely the performance of a measurement on a system followed by an exploitation of the outcome to extract work. When this is carried out in a symmetric fashion, with each system informing the exploitation of the other (and both therefore acting as a demon), it may be shown that the second law can be broken, a consequence of the self-sorting character of the system dynamics.
For open systems described by the quantum master equation (QME), we investigate the excess entropy production under quasistatic operations between nonequilibrium steady states. The average entropy production is composed of the time integral of the in stantaneous steady entropy production rate and the excess entropy production. We propose to define average entropy production rate using the average energy and particle currents, which are calculated by using the full counting statistics with QME. The excess entropy production is given by a line integral in the control parameter space and its integrand is called the Berry-Sinitsyn-Nemenman (BSN) vector. In the weakly nonequilibrium regime, we show that BSN vector is described by $ln breve{rho}_0$ and $rho_0$ where $rho_0$ is the instantaneous steady state of the QME and $breve{rho}_0$ is that of the QME which is given by reversing the sign of the Lamb shift term. If the system Hamiltonian is non-degenerate or the Lamb shift term is negligible, the excess entropy production approximately reduces to the difference between the von Neumann entropies of the system. Additionally, we point out that the expression of the entropy production obtained in the classical Markov jump process is different from our result and show that these are approximately equivalent only in the weakly nonequilibrium regime.
We investigate the microscopic features of bosonic quantum transport in a non-equilibrium steady state, which breaks time reversal invariance spontaneously. The analysis is based on the probability distributions, generated by the correlation function s of the particle current and the entropy production operator. The general approach is applied to an exactly solvable model with a point-like interaction driving the system away from equilibrium. The quantum fluctuations of the particle current and the entropy production are explicitly evaluated in the zero frequency limit. It is shown that all moments of the entropy production distribution are non-negative, which provides a microscopic version of the second law of thermodynamics. On this basis a concept of efficiency, taking into account all quantum fluctuations, is proposed and analysed. The role of the quantum statistics in this context is also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا