ترغب بنشر مسار تعليمي؟ اضغط هنا

The connection between mass, environment and slow rotation in simulated galaxies

58   0   0.0 ( 0 )
 نشر من قبل Claudia Lagos
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent observations from integral field spectroscopy (IFS) indicate that the fraction of galaxies that are slow rotators, $F_{rm SR}$, depends primarily on stellar mass, with no significant dependence on environment. We investigate these trends and the formation paths of slow rotators (SRs) using the EAGLE and Hydrangea hydro-dynamical simulations. EAGLE consists of several cosmological boxes of volumes up to $(100,rm Mpc)^3$, while Hydrangea consists of $24$ cosmological simulations of galaxy clusters and their environment. Together they provide a statistically significant sample in the stellar mass range $10^{9.5},rm M_{odot}-10^{12.3},rm M_{odot}$, of $16,358$ galaxies. We construct IFS-like cubes and measure stellar spin parameters, $lambda_{rm R}$, and ellipticities, allowing us to classify galaxies into slow/fast rotators as in observations. The simulations display a primary dependence of $F_{rm SR}$ on stellar mass, with a weak dependence on environment. At fixed stellar mass, satellite galaxies are more likely to be SRs than centrals. $F_{rm SR}$ shows a dependence on halo mass at fixed stellar mass for central galaxies, while no such trend is seen for satellites. We find that $approx 70$% of SRs at $z=0$ have experienced at least one merger with mass ratio $ge 0.1$, with dry mergers being at least twice more common than wet mergers. Individual dry mergers tend to decrease $lambda_{rm R}$, while wet mergers mostly increase it. However, $30$% of SRs at $z=0$ have not experienced mergers, and those inhabit halos with median spins twice smaller than the halos hosting the rest of the SRs. Thus, although the formation paths of SRs can be varied, dry mergers and/or halos with small spins dominate.

قيم البحث

اقرأ أيضاً

We analyze a suite of $30$ high resolution zoom-in cosmological hydrodynamic simulations of massive galaxies with stellar masses $M_{ast} > 10^{10.9} M_odot$, with the goal of better understanding merger activity in AGN, AGN activity in merging syste ms, SMBH growth during mergers, and the role of gas content. Using the radiative transfer code textsc{Powderday}, we generate HST-WFC3 F160W synthetic observations of redshift $0.5 < z < 3$ central galaxies, add noise properties similar to the CANDELS survey, and measure morphological properties from the synthetic images using commonly adopted non-parametric statistics. We compare the distributions of morphological properties measured from the synthetic images with a sample of inactive galaxies and X-ray selected AGN hosts from CANDELS. We study the connection between mergers and AGN activity in the simulations, the synthetic images, and the observed CANDELS sample. We find that, in both the simulations and CANDELS, even the most luminous $(L_{rm bol} > 10^{45}$ erg s$^{-1})$ AGN in our sample are no more likely than inactive galaxies $(L_{rm bol} < 10^{43}$ erg s$^{-1})$ to be found in merging systems. We also find that AGN activity is not overall enhanced by mergers, nor enhanced at any specific time in the $1$ Gyr preceding and following a merger. Even gas rich major mergers (stellar mass ratio $>$1:4) do not necessarily enhance AGN activity or significantly grow the central SMBH. We conclude that in the simulated massive galaxies studied here, mergers are not the primary drivers of AGN.
We explore the connection between dust and star formation, in the context of environmental effects on galaxy evolution. In particular, we exploit the susceptibility of dust to external processes to assess the influence of dense environment on star-fo rming galaxies. We have selected cluster Abell 1758 from the Local Cluster Substructure Survey (LoCuSS). Its complex dynamical state is an ideal test-bench to track dust removal and destruction in galaxies due to merger and accretion shocks. We present a systematic panchromatic study (from 0.15 $rm mu$m with GALEX to 500 $rm mu$m with Herschel) of spectroscopically confirmed star-forming cluster galaxies at intermediate redshift. We observe that the main subclusters (A1758N and A1758S) belong to two separate large-scale structures, with no overlapping galaxy members. Star-forming cluster members are distributed preferentially outside cluster central regions, and are not grouped in substructures. Rather, these galaxies are being funneled towards the main subclusters along separate accretion filaments. Additionally, we present the first study of dust-to-stellar (DTS) mass ratio used as indicator for local environmental influence on galaxy evolution. Star-forming cluster members show lower mean values (32% at 2.4$rm sigma$) of DTS mass ratio and lower levels of infrared emission from birth clouds with respect to coeval star-forming field galaxies. This picture is consistent with the majority of star-forming cluster members infalling in isolation. Upon accretion, star-formation is observed to decrease and warm dust is destroyed due to heating from the intracluster medium radiation, ram-pressure stripping and merger shocks.
We study the history from $zsim2$ to $zsim0$ of the stellar mass assembly of quiescent and star-forming galaxies in a spatially resolved fashion. For this purpose we use multi-wavelength imaging data from the Hubble Space Telescope (HST) over the GOO DS fields and the Sloan Digital Sky Survey (SDSS) for the local population. We present the radial stellar mass surface density profiles of galaxies with $M_{ast}>10^{10} M_{odot}$, corrected for mass-to-light ratio ($M_{ast}/L$) variations, and derive the half-mass radius ($R_{m}$), central stellar mass surface density within 1 kpc ($Sigma_{1}$) and surface density at $R_{m}$ ($Sigma_{m}$) for star-forming and quiescent galaxies and study their evolution with redshift. At fixed stellar mass, the half-mass sizes of quiescent galaxies increase from $zsim2$ to $zsim0$ by a factor of $sim3-5$, whereas the half-mass sizes of star-forming galaxies increase only slightly, by a factor of $sim2$. The central densities $Sigma_{1}$ of quiescent galaxies decline slightly (by a factor of $lesssim1.7$) from $zsim2$ to $zsim0$, while for star-forming galaxies $Sigma_{1}$ increases with time, at fixed mass. We show that the central density $Sigma_{1}$ has a tighter correlation with specific star-formation rate (sSFR) than $Sigma_{m}$ and for all masses and redshifts galaxies with higher central density are more prone to be quenched. Reaching a high central density ($Sigma_{1} gtrsim 10^{10} M_{odot} mathrm{kpc}^2$) seems to be a prerequisite for the cessation of star formation, though a causal link between high $Sigma_{1}$ and quenching is difficult to prove and their correlation can have a different origin.
200 - Risa H. Wechsler 2018
In our modern understanding of galaxy formation, every galaxy forms within a dark matter halo. The formation and growth of galaxies over time is connected to the growth of the halos in which they form. The advent of large galaxy surveys as well as hi gh-resolution cosmological simulations has provided a new window into the statistical relationship between galaxies and halos and its evolution. Here we define this galaxy-halo connection as the multi-variate distribution of galaxy and halo properties that can be derived from observations and simulations. This connection provides a key test of physical galaxy formation models; it also plays an essential role in constraints of cosmological models using galaxy surveys and in elucidating the properties of dark matter using galaxies. We review techniques for inferring the galaxy-halo connection and the insights that have arisen from these approaches. Some things we have learned are that galaxy formation efficiency is a strong function of halo mass; at its peak in halos around a pivot halo mass of 10^12 Msun, less than 20% of the available baryons have turned into stars by the present day; the intrinsic scatter in galaxy stellar mass is small, less than 0.2 dex at a given halo mass above this pivot mass; below this pivot mass galaxy stellar mass is a strong function of halo mass; the majority of stars over cosmic time were formed in a narrow region around this pivot mass. We also highlight key open questions about how galaxies and halos are connected, including understanding the correlations with secondary properties and the connection of these properties to galaxy clustering.
Using 22 hydrodynamical simulated galaxies in a LCDM cosmological context we recover not only the observed baryonic Tully-Fisher relation, but also the observed mass discrepancy--acceleration relation, which reflects the distribution of the main comp onents of the galaxies throughout their disks. This implies that the simulations, which span the range 52 < V$_{rm flat}$ < 222 km/s where V$_{rm flat}$ is the circular velocity at the flat part of the rotation curve, and match galaxy scaling relations, are able to recover the observed relations between the distributions of stars, gas and dark matter over the radial range for which we have observational rotation curve data. Furthermore, we explicitly match the observed baryonic to halo mass relation for the first time with simulated galaxies. We discuss our results in the context of the baryon cycle that is inherent in these simulations, and with regards to the effect of baryonic processes on the distribution of dark matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا