ﻻ يوجد ملخص باللغة العربية
Recent observations from integral field spectroscopy (IFS) indicate that the fraction of galaxies that are slow rotators, $F_{rm SR}$, depends primarily on stellar mass, with no significant dependence on environment. We investigate these trends and the formation paths of slow rotators (SRs) using the EAGLE and Hydrangea hydro-dynamical simulations. EAGLE consists of several cosmological boxes of volumes up to $(100,rm Mpc)^3$, while Hydrangea consists of $24$ cosmological simulations of galaxy clusters and their environment. Together they provide a statistically significant sample in the stellar mass range $10^{9.5},rm M_{odot}-10^{12.3},rm M_{odot}$, of $16,358$ galaxies. We construct IFS-like cubes and measure stellar spin parameters, $lambda_{rm R}$, and ellipticities, allowing us to classify galaxies into slow/fast rotators as in observations. The simulations display a primary dependence of $F_{rm SR}$ on stellar mass, with a weak dependence on environment. At fixed stellar mass, satellite galaxies are more likely to be SRs than centrals. $F_{rm SR}$ shows a dependence on halo mass at fixed stellar mass for central galaxies, while no such trend is seen for satellites. We find that $approx 70$% of SRs at $z=0$ have experienced at least one merger with mass ratio $ge 0.1$, with dry mergers being at least twice more common than wet mergers. Individual dry mergers tend to decrease $lambda_{rm R}$, while wet mergers mostly increase it. However, $30$% of SRs at $z=0$ have not experienced mergers, and those inhabit halos with median spins twice smaller than the halos hosting the rest of the SRs. Thus, although the formation paths of SRs can be varied, dry mergers and/or halos with small spins dominate.
We analyze a suite of $30$ high resolution zoom-in cosmological hydrodynamic simulations of massive galaxies with stellar masses $M_{ast} > 10^{10.9} M_odot$, with the goal of better understanding merger activity in AGN, AGN activity in merging syste
We explore the connection between dust and star formation, in the context of environmental effects on galaxy evolution. In particular, we exploit the susceptibility of dust to external processes to assess the influence of dense environment on star-fo
We study the history from $zsim2$ to $zsim0$ of the stellar mass assembly of quiescent and star-forming galaxies in a spatially resolved fashion. For this purpose we use multi-wavelength imaging data from the Hubble Space Telescope (HST) over the GOO
In our modern understanding of galaxy formation, every galaxy forms within a dark matter halo. The formation and growth of galaxies over time is connected to the growth of the halos in which they form. The advent of large galaxy surveys as well as hi
Using 22 hydrodynamical simulated galaxies in a LCDM cosmological context we recover not only the observed baryonic Tully-Fisher relation, but also the observed mass discrepancy--acceleration relation, which reflects the distribution of the main comp