ﻻ يوجد ملخص باللغة العربية
The seek for a new universal formulation for describing various non-equilibrium processes is a central task of modern non-equilibrium thermodynamics. In this paper, a novel steady-state thermodynamic formalism was established for general Markov processes described by the Chapman-Kolmogorov equation. Furthermore, corresponding formalisms of steady-state thermodynamics for master equation and Fokker-Planck equation could be rigorously derived in mathematics. To be concrete, we proved that: 1) in the limit of continuous time, the steady-state thermodynamic formalism for the Chapman-Kolmogorov equation fully agrees with that for the master equation; 2) a similar one-to-one correspondence could be established rigorously between the master equation and Fokker-Planck equation in the limit of large system size; 3) when a Markov process is restrained to one-step jump, the steady-state thermodynamic formalism for the Fokker-Planck equation with discrete state variables also goes to that for master equations, as the discretization step gets smaller and smaller. Our analysis indicated that, with respect to the steady state, general Markov processes admit a unified and self-consistent non-equilibrium thermodynamic formulation, regardless of underlying detailed models.
Electrical circuits with transient elements can be good examples of systems where non--steady irreversible processes occur, so in the same way as a steady state energy converter, we use the formal construction of the first order irreversible thermody
We derive the generalized Fokker-Planck equation associated with a Langevin equation driven by arbitrary additive white noise. We apply our result to study the distribution of symmetric and asymmetric L{e}vy flights in an infinitely deep potential we
We present a principled approach for estimating the matrix of microscopic rates among states of a Markov process, given only its stationary state population distribution and a single average global kinetic observable. We adapt Maximum Caliber, a vari
We study the steady state of the abelian sandpile models with stochastic toppling rules. The particle addition operators commute with each other, but in general these operators need not be diagonalizable. We use their abelian algebra to determine the
Random dynamical systems (RDS) evolve by a dynamical rule chosen independently with a certain probability, from a given set of deterministic rules. These dynamical systems in an interval reach a steady state with a unique well-defined probability den