ﻻ يوجد ملخص باللغة العربية
Electrical circuits with transient elements can be good examples of systems where non--steady irreversible processes occur, so in the same way as a steady state energy converter, we use the formal construction of the first order irreversible thermodynamic (FOIT) to describe the energetics of these circuits. In this case, we propose an isothermic model of two meshes with transient and passive elements, besides containing two voltage sources (which can be functions of time); this is a non--steady energy converter model. Through the Kirchhoff equations, we can write the circuit phenomenological equations. Then, we apply an integral transformation to linearise the dynamic equations and rewrite them in algebraic form, but in the frequency space. However, the same symmetry for steady states appears (cross effects). Thus, we can study the energetic performance of this converter model by means of two parameters: the force ratio and the coupling degre. Furthermore, it is possible to obtain the characteristic functions (dissipation function, power output, efficiency, etc.). They allow us to establish a simple optimal operation regime of this energy converter. As an example, we obtain the converter behavior for the maximum efficient power regime (MPE).
The study of stochastic thermodynamic machines is one of the main topics in nonequilibrium thermodynamics. In this study, within the framework of Fokker-Planck equation, and using the method of characteristics of partial differential equation as well
We extend the notion of the Eigenstate Thermalization Hypothesis (ETH) to Open Quantum Systems governed by the Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) Master Equation. We present evidence that the eigenstates of non-equilibrium steady state (NES
The seek for a new universal formulation for describing various non-equilibrium processes is a central task of modern non-equilibrium thermodynamics. In this paper, a novel steady-state thermodynamic formalism was established for general Markov proce
In this paper we revisit the thermocouple model, as a linear irreversible thermodynamic energy converter. As is well known, the linear model of the thermocuple is one of the classics in this branch. In this model we note two types of phenomenological
The time evolution of an extended quantum system can be theoretically described in terms of the Schwinger-Keldysh functional integral formalism, whose action conveniently encodes the information about the dynamics. We show here that the action of qua