ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatially resolved kinematics in the central 1 kpc of a compact star-forming galaxy at z=2.3 from ALMA CO observations

230   0   0.0 ( 0 )
 نشر من قبل Guillermo Barro
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present high spatial resolution (FWHM$sim$0.14) observations of the CO($8-7$) line in GDS-14876, a compact star-forming galaxy at $z=2.3$ with total stellar mass of $log(M_{star}/M_{odot})=10.9$. The spatially resolved velocity map of the inner $rlesssim1$~kpc reveals a continous velocity gradient consistent with the kinematics of a rotating disk with $v_{rm rot}(r=1rm kpc)=163pm5$ km s$^{-1}$ and $v_{rm rot}/sigmasim2.5$. The gas-to-stellar ratios estimated from CO($8-7$) and the dust continuum emission span a broad range, $f^{rm CO}_{rm gas}=M_{rm gas}/M_{star}=13-45%$ and $f^{rm cont}_{rm gas}=50-67%$, but are nonetheless consistent given the uncertainties in the conversion factors. The dynamical modeling yields a dynamical mass of$log(M_{rm dyn}/M_{odot})=10.58^{+0.5}_{-0.2}$ which is lower, but still consistent with the baryonic mass, $log$(M$_{rm bar}$= M$_{star}$ + M$^{rm CO}_{rm gas}$/M$_{odot}$)$=11.0$, if the smallest CO-based gas fraction is assumed. Despite a low, overall gas fraction, the small physical extent of the dense, star-forming gas probed by CO($8-7$), $sim3times$ smaller than the stellar size, implies a strong concentration that increases the gas fraction up to $f^{rm CO, 1rm kpc}_{rm gas}sim 85%$ in the central 1 kpc. Such a gas-rich center, coupled with a high star-formation rate, SFR$sim$ 500 M$_{odot}$ yr$^{-1}$, suggests that GDS-14876 is quickly assembling a dense stellar component (bulge) in a strong nuclear starburst. Assuming its gas reservoir is depleted without replenishment, GDS-14876 will quickly ($t_{rm depl}sim27$ Myr) become a compact quiescent galaxy that could retain some fraction of the observed rotational support.

قيم البحث

اقرأ أيضاً

186 - Etsuko Mieda 2016
We present results from IROCKS (Intermediate Redshift OSIRIS Chemo-Kinematic Survey) for sixteen z~1 and one z~1.4 star-forming galaxies. All galaxies were observed with OSIRIS with the laser guide star adaptive optics system at Keck Observatory. We use rest-frame nebular Ha emission lines to trace morphologies and kinematics of ionized gas in star-forming galaxies on sub-kiloparsec physical scales. We observe elevated velocity dispersions (sigma > 50 km/s) seen in z > 1.5 galaxies persist at z~1 in the integrated galaxies. Using an inclined disk model and the ratio of v/sigma, we find that 1/3 of the z~1 sample are disk candidates while the other 2/3 of the sample are dominated by merger-like and irregular sources. We find that including extra attenuation towards HII regions derived from stellar population synthesis modeling brings star formation rates (SFR) using Ha and stellar population fit into a better agreement. We explore properties of compact Ha sub-component, or clump, at z~1 and find that they follow a similar size-luminosity relation as local HII regions but are scaled-up by an order of magnitude with higher luminosities and sizes. Comparing the z~1 clumps to other high-redshift clump studies, we determine that the clump SFR surface density evolves as a function of redshift. This may imply clump formation is directly related to the gas fraction in these systems and support disk fragmentation as their formation mechanism since gas fraction scales with redshift.
We report the detection of a massive neutral gas outflow in the z=2.09 gravitationally lensed Dusty Star-Forming Galaxy HATLASJ085358.9+015537 (G09v1.40), seen in absorption with the OH+(1_1-1_0) transition using spatially resolved (0.5x0.4) Atacama Large Millimeter/submillimeter Array (ALMA) observations. The blueshifted OH+ line is observed simultaneously with the CO(9-8) emission line and underlying dust continuum. These data are complemented by high angular resolution (0.17x0.13) ALMA observations of CH+(1-0) and underlying dust continuum, and Keck 2.2 micron imaging tracing the stellar emission. The neutral outflow, dust, dense molecular gas and stars all show spatial offsets from each other. The total atomic gas mass of the observed outflow is 6.7x10^9 M_sun, >25% as massive as the gas mass of the galaxy. We find that a conical outflow geometry best describes the OH+ kinematics and morphology and derive deprojected outflow properties as functions of possible inclination (0.38 deg-64 deg). The neutral gas mass outflow rate is between 83-25400 M_sun/yr, exceeding the star formation rate (788+/-300 M_sun/yr) if the inclination is >3.6 deg (mass-loading factor = 0.3-4.7). Kinetic energy and momentum fluxes span 4.4-290x10^9 L_sun and 0.1-3.7x10^37 dyne, respectively (energy-loading factor = 0.013-16), indicating that the feedback mechanisms required to drive the outflow depend on the inclination assumed. We derive a gas depletion time between 29 and 1 Myr, but find that the neutral outflow is likely to remain bound to the galaxy, unless the inclination is small, and may be re-accreted if additional feedback processes do not occur.
We present first results from the SXDF-ALMA 1.5 arcmin^2 deep survey at 1.1 mm using Atacama Large Millimeter Array (ALMA). The map reaches a 1sigma depth of 55 uJy/beam and covers 12 Halpha-selected star-forming galaxies at z = 2.19 or z=2.53. We ha ve detected continuum emission from three of our Halpha-selected sample, including one compact star-forming galaxy with high stellar surface density, NB2315-07. They are all red in the rest-frame optical and have stellar masses of log (M*/Msun)>10.9 whereas the other blue, main-sequence galaxies with log(M*/Msun)=10.0-10.8 are exceedingly faint, <290 uJy (2sigma upper limit). We also find the 1.1 mm-brightest galaxy, NB2315-02, to be associated with a compact (R_e=0.7+-0.1 kpc), dusty star-forming component. Given high gas fraction (44^{+20}_{-8}% or 37^{+25}_{-3}%) and high star formation rate surface density (126^{+27}_{-30} Msun yr^{-1}kpc^{-2}), the concentrated starburst can within less than 50^{+12}_{-11} Myr build up a stellar surface density matching that of massive compact galaxies at z~2, provided at least 19+-3% of the total gas is converted into stars in the galaxy centre. On the other hand, NB2315-07, which already has such a high stellar surface density core, shows a gas fraction (23+-8%) and is located in the lower envelope of the star formation main-sequence. This compact less star-forming galaxy is likely to be in an intermediate phase between compact dusty star-forming and quiescent galaxies.
We present ALMA 2-mm continuum and CO (2-1) spectral line imaging of the gravitationally lensed z=0.654 star-forming/quasar composite RX J1131-1231 at 240-400 mas angular resolution. The continuum emission is found to be compact and coincident with t he optical emission, whereas the molecular gas forms a complete Einstein ring, which shows strong differential magnification. The de-lensed source structure is determined on 400-pc resolution using a visibility-fitting lens modelling technique. The reconstructed molecular gas velocity-field is consistent with a rotating disk with a maximum rotational velocity of 280 km/s. From dynamical model fitting we find an enclosed mass M(r<5 kpc)=(1.46+/-0.31)*10^11 M_sol. The molecular gas distribution is highly structured, with clumps that are co-incident with higher gas velocity dispersion regions 40-50 km/s and with the intensity peaks in the optical emission, which are associated with sites of on-going turbulent star-formation. The peak in the CO (2-1) distribution is not co-incident with the AGN, where there is a paucity of molecular gas emission, possibly due to radiative feedback from the central engine. The intrinsic molecular gas luminosity is L_CO=(1.2+/-0.3)*10^10 K km/s pc^2 and the inferred gas mass is M(H2)=(8.3+/-3.0)*10^10 M_sol, which given its dynamical mass is consistent with a CO-H2 conversion factor of alpha = 5.5+/-2.0 M_solar(K km/s pc^2)^-1. This suggests that the star-formation efficiency is dependent on the host galaxy morphology as opposed to the nature of the AGN. The far-infrared continuum spectral energy distribution shows evidence for heated dust, equivalent to an obscured star-formation rate of SFR=69^(+41)_(-25)*(7.3/u_IR)M_sol/yr, which demonstrates the composite star-forming/AGN nature of this system. RX J1131-1231
We present spatially-resolved Atacama Large Millimeter/sub-millimeter Array (ALMA) 870 $mu$m dust continuum maps of six massive, compact, dusty star-forming galaxies (SFGs) at $zsim2.5$. These galaxies are selected for their small rest-frame optical sizes ($r_{rm e, F160W}sim1.6$ kpc) and high stellar-mass densities that suggest that they are direct progenitors of compact quiescent galaxies at $zsim2$. The deep observations yield high far-infrared (FIR) luminosities of L$_{rm IR}=10^{12.3-12.8}$ L$_{odot}$ and star formation rates (SFRs) of SFR$=200-700$ M$_{odot}$yr$^{-1}$, consistent with those of typical star-forming main sequence galaxies. The high-spatial resolution (FWHM$sim$0.12-0.18) ALMA and HST photometry are combined to construct deconvolved, mean radial profiles of their stellar mass and (UV+IR) SFR. We find that the dusty, nuclear IR-SFR overwhelmingly dominates the bolometric SFR up to $rsim5$ kpc, by a factor of over 100$times$ from the unobscured UV-SFR. Furthermore, the effective radius of the mean SFR profile ($r_{rm e, SFR}sim1$ kpc) is $sim$30% smaller than that of the stellar mass profile. The implied structural evolution, if such nuclear starburst last for the estimated gas depletion time of $Delta t=pm100$ Myr, is a 4$times$ increase of the stellar mass density within the central 1 kpc and a 1.6$times$ decrease of the half-mass radius. This structural evolution fully supports dissipation-driven, formation scenarios in which strong nuclear starbursts transform larger, star-forming progenitors into compact quiescent galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا