ترغب بنشر مسار تعليمي؟ اضغط هنا

SXDF-ALMA 1.5 arcmin^2 deep survey. A compact dusty star-forming galaxy at z=2.5

98   0   0.0 ( 0 )
 نشر من قبل Ken-ichi Tadaki
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present first results from the SXDF-ALMA 1.5 arcmin^2 deep survey at 1.1 mm using Atacama Large Millimeter Array (ALMA). The map reaches a 1sigma depth of 55 uJy/beam and covers 12 Halpha-selected star-forming galaxies at z = 2.19 or z=2.53. We have detected continuum emission from three of our Halpha-selected sample, including one compact star-forming galaxy with high stellar surface density, NB2315-07. They are all red in the rest-frame optical and have stellar masses of log (M*/Msun)>10.9 whereas the other blue, main-sequence galaxies with log(M*/Msun)=10.0-10.8 are exceedingly faint, <290 uJy (2sigma upper limit). We also find the 1.1 mm-brightest galaxy, NB2315-02, to be associated with a compact (R_e=0.7+-0.1 kpc), dusty star-forming component. Given high gas fraction (44^{+20}_{-8}% or 37^{+25}_{-3}%) and high star formation rate surface density (126^{+27}_{-30} Msun yr^{-1}kpc^{-2}), the concentrated starburst can within less than 50^{+12}_{-11} Myr build up a stellar surface density matching that of massive compact galaxies at z~2, provided at least 19+-3% of the total gas is converted into stars in the galaxy centre. On the other hand, NB2315-07, which already has such a high stellar surface density core, shows a gas fraction (23+-8%) and is located in the lower envelope of the star formation main-sequence. This compact less star-forming galaxy is likely to be in an intermediate phase between compact dusty star-forming and quiescent galaxies.

قيم البحث

اقرأ أيضاً

154 - K. Kohno 2016
We have conducted 1.1 mm ALMA observations of a contiguous $105 times 50$ or 1.5 arcmin$^2$ window in the SXDF-UDS-CANDELS. We achieved a 5$sigma$ sensitivity of 0.28 mJy, providing a flat sensus of dusty star-forming galaxies with $L_{rm IR} sim6tim es10^{11}$ $L_odot$ (for $T_{rm dust}$ =40K) up to $zsim10$ thanks to the negative K-correction at this wavelength. We detected 5 brightest sources (S/N$>$6) and 18 low-significance sources (5$>$S/N$>$4; these may contain spurious detections, though). One of the 5 brightest ALMA sources ($S_{rm 1.1mm} = 0.84 pm 0.09$ mJy) is extremely faint in the WFC3 and VLT/HAWK-I images, demonstrating that a contiguous ALMA imaging survey is able to uncover a faint dust-obscured population that is invisible in deep optical/near-infrared surveys. We found a possible [CII]-line emitter at $z=5.955$ or a low-$z$ CO emitting galaxy within the field, which may allow us to constrain the [CII] and/or the CO luminosity functions across the history of the universe.
We report 1.1 mm number counts revealed with the Atacama Large Millimeter/submillimeter Array (ALMA) in the Subaru/XMM-Newton Deep Survey Field (SXDF). The advent of ALMA enables us to reveal millimeter-wavelength number counts down to the faint end without source confusion. However, previous studies are based on the ensemble of serendipitously-detected sources in fields originally targeting different sources and could be biased due to the clustering of sources around the targets. We derive number counts in the flux range of 0.2-2 mJy by using 23 (>=4sigma) sources detected in a continuous 2.0 arcmin$^2$ area of the SXDF. The number counts are consistent with previous results within errors, suggesting that the counts derived from serendipitously-detected sources are not significantly biased, although there could be field-to-field variation due to the small survey area. By using the best-fit function of the number counts, we find that ~40% of the extragalactic background light at 1.1 mm is resolved at S(1.1mm) > 0.2 mJy.
We present a multi-wavelength analysis of five submillimeter sources (S_1.1mm = 0.54-2.02 mJy) that were detected during our 1.1-mm-deep continuum survey in the SXDF-UDS-CANDELS field (2 arcmin^2, 1sigma = 0.055 mJy beam^-1) using the Atacama Large M illimeter/submillimeter Array (ALMA). The two brightest sources correspond to a known single-dish (AzTEC) selected bright submillimeter galaxy (SMG), whereas the remaining three are faint SMGs newly uncovered by ALMA. If we exclude the two brightest sources, the contribution of the ALMA-detected faint SMGs to the infrared extragalactic background light is estimated to be ~ 4.1^{+5.4}_{-3.0} Jy deg^{-2}, which corresponds to ~ 16^{+22}_{-12}% of the infrared extragalactic background light. This suggests that their contribution to the infrared extragalactic background light is as large as that of bright SMGs. We identified multi-wavelength counterparts of the five ALMA sources. One of the sources (SXDF-ALMA3) is extremely faint in the optical to near-infrared region despite its infrared luminosity (L_IR ~ 1e12 L_sun or SFR ~ 100 M_sun yr^{-1}). By fitting the spectral energy distributions (SEDs) at the optical-to-near-infrared wavelengths of the remaining four ALMA sources, we obtained the photometric redshifts (z_photo) and stellar masses (M_*): z_photo ~ 1.3-2.5, M_* ~ (3.5-9.5)e10 M_sun. We also derived their star formation rates (SFRs) and specific SFRs (sSFRs) as ~ 30-200 M_sun yr^{-1} and ~ 0.8-2 Gyr^{-1}, respectively. These values imply that they are main-sequence star-forming galaxies.
We present the serendipitous ALMA detection of a faint submillimeter galaxy (SMG) lensed by a foreground z~1 galaxy. By optimizing the source detection to deblend the system, we accurately build the full spectral energy distribution of the distant ga laxy from the I814 band to radio wavelengths. It is extremely red, with a I-K colour larger than 2.5. We estimate a photometric redshift of 3.28 and determine the physical parameters. The distant galaxy turns out to be magnified by the foreground lens by a factor of ~1.5, which implies an intrinsic Ks-band magnitude of ~24.5, a submillimeter flux at 870um of ~2.5 mJy and a SFR of ~150-300Msun/yr, depending on the adopted tracer. These values place our source towards the faint end of the distribution of observed SMGs, and in particular among the still few faint SMGs with a fully characterized spectral energy distribution, which allows us not only to accurately estimate its redshift but also to measure its stellar mass and other physical properties. The galaxy studied in this work is a representative of the population of faint SMGs, of which only few objects are known to date, that are undetected in optical and therefore are not typically accounted for when measuring the cosmic star formation history (SFH). This faint galaxy population thus likely represents an important and missing piece in our understanding of the cosmic SFH. Its observation and characterization is of major importance to achieve a solid picture of galaxy evolution.
The aim of this paper is to investigate spectral and photometric properties of 854 faint ($i_{AB}$<~25 mag) star-forming galaxies (SFGs) at 2<z<2.5 using the VIMOS Ultra-Deep Survey (VUDS) spectroscopic data and deep multi-wavelength photometric data in three extensively studied extragalactic fields (ECDFS, VVDS, COSMOS). These SFGs were targeted for spectroscopy based on their photometric redshifts. The VUDS spectra are used to measure the UV spectral slopes ($beta$) as well as Ly$alpha$ equivalent widths (EW). On average, the spectroscopically measured $beta$ (-1.36$pm$0.02), is comparable to the photometrically measured $beta$ (-1.32$pm$0.02), and has smaller measurement uncertainties. The positive correlation of $beta$ with the Spectral Energy Distribution (SED)-based measurement of dust extinction, E$_{rm s}$(B-V), emphasizes the importance of $beta$ as an alternative dust indicator at high redshifts. To make a proper comparison, we divide these SFGs into three subgroups based on their rest-frame Ly$alpha$ EW: SFGs with no Ly$alpha$ emission (SFG$_{rm N}$; EW$le$0AA), SFGs with Ly$alpha$ emission (SFG$_{rm L}$; EW$>$0AA), and Ly$alpha$ emitters (LAEs; EW$ge$20AA). The fraction of LAEs at these redshifts is $sim$10%, which is consistent with previous observations. We compared best-fit SED-estimated stellar parameters of the SFG$_{rm N}$, SFG$_{rm L}$ and LAE samples. For the luminosities probed here ($sim$L$^*$), we find that galaxies with and without Ly$alpha$ in emission have small but significant differences in their SED-based properties. We find that LAEs have less dust, and lower star-formation rates (SFR) compared to non-LAEs. We also find that LAEs are less massive compared to non-LAEs, though the difference is smaller and less significant compared to the SFR and E$_{rm s}$(B-V). [abridged]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا