ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational clustering of cosmic relic neutrinos in the Milky Way

101   0   0.0 ( 0 )
 نشر من قبل Xin Zhang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The standard model of cosmology predicts the existence of cosmic neutrino background in the present Universe. To detect cosmic relic neutrinos in the vicinity of the Earth, it is necessary to evaluate the gravitational clustering effects on relic neutrinos in the Milky Way. Here we introduce a reweighting technique in the N-one-body simulation method, so that a single simulation can yield neutrino density profiles for different neutrino masses and phase space distributions. In light of current experimental results that favor small neutrino masses, the neutrino number density contrast around the Earth is found to be almost proportional to the square of neutrino mass. The density contrast-mass relation and the reweighting technique are useful for studying the phenomenology associated with the future detection of the cosmic neutrino background.



قيم البحث

اقرأ أيضاً

The standard cosmological model predicts the existence of a Cosmic Neutrino Background, which has not yet been observed directly. Some experiments aiming at its detection are currently under development, despite the tiny kinetic energy of the cosmolo gical relic neutrinos, which makes this task incredibly challenging. Since massive neutrinos are attracted by the gravitational potential of our Galaxy, they can cluster locally. Neutrinos should be more abundant at the Earth position than at an average point in the Universe. This fact may enhance the expected event rate in any future experiment. Past calculations of the local neutrino clustering factor only considered a spherical distribution of matter in the Milky Way and neglected the influence of other nearby objects like the Virgo cluster, although recent $N$-body simulations suggest that the latter may actually be important. In this paper, we adopt a back-tracking technique, well established in the calculation of cosmic rays fluxes, to perform the first three-dimensional calculation of the number density of relic neutrinos at the Solar System, taking into account not only the matter composition of the Milky Way, but also the contribution of the Andromeda galaxy and the Virgo cluster. The effect of Virgo is indeed found to be relevant and to depend non-trivially on the value of the neutrino mass. Our results show that the local neutrino density is enhanced by 0.53% for a neutrino mass of 10 meV, 12% for 50 meV, 50% for 100 meV or 500% for 300 meV.
We consider the possibility of constraining decaying dark matter by looking out through the Milky Way halo. Specifically we use Chandra blank sky observations to constrain the parameter space of sterile neutrinos. We find that a broad band in paramet er space is still open, leaving the sterile neutrino as an excellent dark matter candidate.
219 - P. R. Silva 2012
A new equation of state is proposed in order to describe the thermal behavior of relic neutrinos. It is based on extensions of the MIT bag model to deal with the gravitational interaction and takes in account the fermionic character of neutrinos. The results for the temperature and entropy of relic neutrinos are compared with those of the cosmic background radiation, treated as a gas of photons at the temperature of 2.726 K. In particular, it is found that the temperature of the relic neutrinos is 3/4 of that of the photon gas. The ratio between the two entropies is also estimate.
141 - Ofelia Pisanti 2017
Neutrinos are key astronomical messengers, because they are undeflected by magnetic field and unattenuated by electromagnetic interaction. After the first detection of extraterrestrial neutrinos in the TeV-PeV region by Neutrino Telescopes we are ent ering a new epoch where neutrino astronomy becomes possible. In this paper I briefly review the main issues concerning cosmological neutrinos and their experimental observation.
For the first time the antineutrino spectrum formed as a result of neutron and tritium decays during the epoch of primordial nucleosynthesis is calculated. This spectrum is a non-thermal increase in addition to the standard cosmic neutrino background (C$ u$B) whose thermal spectrum was formed before the beginning of primordial nucleosynthesis. For energy larger than $10^{-2},$eV the calculated non-thermal antineutrino flux exceeds the C$ u$B spectrum and there are no other comparable sources of antineutrino in this range. The observations of these antineutrinos will allow us to look directly at the very early Universe and non-equilibrium processes taken place before, during, and some time after primordial nucleosynthesis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا