ﻻ يوجد ملخص باللغة العربية
We investigate anomalous ion-motional heating, a limitation to multi-qubit quantum-logic gate fidelity in trapped-ion systems, as a function of ion-electrode separation. Using a multi-zone surface-electrode trap in which ions can be held at five discrete distances from the metal electrodes, we measure power-law dependencies of the electric-field noise experienced by the ion on the ion-electrode distance $d$. We find a scaling of approximately $d^{-4}$ regardless of whether the electrodes are at room temperature or cryogenic temperature, despite the fact that the heating rates are approximately two orders of magnitude smaller in the latter case. Through auxiliary measurements using application of noise to the electrodes, we rule out technical limitations to the measured heating rates and scalings. We also measure frequency scaling of the inherent electric-field noise close to $1/f$ at both temperatures. These measurements eliminate from consideration anomalous-heating models which do not have a $d^{-4}$ distance dependence, including several microscopic models of current interest.
We probe electric-field noise in a surface ion trap for ion-surface distances $d$ between 50 and 300 $mumathrm{m}$ in the normal and planar directions. We find the noise distance dependence to scale as $d^{-2.6}$ in our trap and a frequency dependenc
We describe the design, fabrication, and operation of a novel surface-electrode Paul trap that produces a radio-frequency-null along the axis perpendicular to the trap surface. This arrangement enables control of the vertical trapping potential and c
We probe electric-field noise near the metal surface of an ion trap chip in a previously unexplored high-temperature regime. We observe a non-trivial temperature dependence with the noise amplitude at 1-MHz frequency saturating around 500~K. Measurem
We measure ion heating following transport throughout a Y-junction surface-electrode ion trap. By carefully selecting the trap voltage update rate during adiabatic transport along a trap arm, we observe minimal heating relative to the anomalous heati
Two-dimensional crystals of trapped ions are a promising system with which to implement quantum simulations of challenging problems such as spin frustration. Here, we present a design for a surface-electrode elliptical ion trap which produces a 2-D i