ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved Learning in Evolution Strategies via Sparser Inter-Agent Network Topologies

72   0   0.0 ( 0 )
 نشر من قبل Dhaval Adjodah
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We draw upon a previously largely untapped literature on human collective intelligence as a source of inspiration for improving deep learning. Implicit in many algorithms that attempt to solve Deep Reinforcement Learning (DRL) tasks is the network of processors along which parameter values are shared. So far, existing approaches have implicitly utilized fully-connected networks, in which all processors are connected. However, the scientific literature on human collective intelligence suggests that complete networks may not always be the most effective information network structures for distributed search through complex spaces. Here we show that alternative topologies can improve deep neural network training: we find that sparser networks learn higher rewards faster, leading to learning improvements at lower communication costs.

قيم البحث

اقرأ أيضاً

We create an artificial system of agents (attention-based neural networks) which selectively exchange messages with each-other in order to study the emergence of memetic evolution and how memetic evolutionary pressures interact with genetic evolution of the network weights. We observe that the ability of agents to exert selection pressures on each-other is essential for memetic evolution to bootstrap itself into a state which has both high-fidelity replication of memes, as well as continuing production of new memes over time. However, in this system there is very little interaction between this memetic ecology and underlying tasks driving individual fitness - the emergent meme layer appears to be neither helpful nor harmful to agents ability to learn to solve tasks. Sourcecode for these experiments is available at https://github.com/GoodAI/memes
122 - Yong Liu , Weixun Wang , Yujing Hu 2019
In large-scale multi-agent systems, the large number of agents and complex game relationship cause great difficulty for policy learning. Therefore, simplifying the learning process is an important research issue. In many multi-agent systems, the inte ractions between agents often happen locally, which means that agents neither need to coordinate with all other agents nor need to coordinate with others all the time. Traditional methods attempt to use pre-defined rules to capture the interaction relationship between agents. However, the methods cannot be directly used in a large-scale environment due to the difficulty of transforming the complex interactions between agents into rules. In this paper, we model the relationship between agents by a complete graph and propose a novel game abstraction mechanism based on two-stage attention network (G2ANet), which can indicate whether there is an interaction between two agents and the importance of the interaction. We integrate this detection mechanism into graph neural network-based multi-agent reinforcement learning for conducting game abstraction and propose two novel learning algorithms GA-Comm and GA-AC. We conduct experiments in Traffic Junction and Predator-Prey. The results indicate that the proposed methods can simplify the learning process and meanwhile get better asymptotic performance compared with state-of-the-art algorithms.
Many real-world applications involve teams of agents that have to coordinate their actions to reach a common goal against potential adversaries. This paper focuses on zero-sum games where a team of players faces an opponent, as is the case, for examp le, in Bridge, collusion in poker, and collusion in bidding. The possibility for the team members to communicate before gameplay---that is, coordinate their strategies ex ante---makes the use of behavioral strategies unsatisfactory. We introduce Soft Team Actor-Critic (STAC) as a solution to the teams coordination problem that does not require any prior domain knowledge. STAC allows team members to effectively exploit ex ante communication via exogenous signals that are shared among the team. STAC reaches near-optimal coordinated strategies both in perfectly observable and partially observable games, where previous deep RL algorithms fail to reach optimal coordinated behaviors.
Neuroevolution is a process of training neural networks (NN) through an evolutionary algorithm, usually to serve as a state-to-action mapping model in control or reinforcement learning-type problems. This paper builds on the Neuro Evolution of Augmen ted Topologies (NEAT) formalism that allows designing topology and weight evolving NNs. Fundamental advancements are made to the neuroevolution process to address premature stagnation and convergence issues, central among which is the incorporation of automated mechanisms to control the population diversity and average fitness improvement within the neuroevolution process. Insights into the performance and efficiency of the new algorithm is obtained by evaluating it on three benchmark problems from the Open AI platform and an Unmanned Aerial Vehicle (UAV) collision avoidance problem.
75 - Huanrui Yang , Wei Wen , Hai Li 2019
In seeking for sparse and efficient neural network models, many previous works investigated on enforcing L1 or L0 regularizers to encourage weight sparsity during training. The L0 regularizer measures the parameter sparsity directly and is invariant to the scaling of parameter values, but it cannot provide useful gradients, and therefore requires complex optimization techniques. The L1 regularizer is almost everywhere differentiable and can be easily optimized with gradient descent. Yet it is not scale-invariant, causing the same shrinking rate to all parameters, which is inefficient in increasing sparsity. Inspired by the Hoyer measure (the ratio between L1 and L2 norms) used in traditional compressed sensing problems, we present DeepHoyer, a set of sparsity-inducing regularizers that are both differentiable almost everywhere and scale-invariant. Our experiments show that enforcing DeepHoyer regularizers can produce even sparser neural network models than previous works, under the same accuracy level. We also show that DeepHoyer can be applied to both element-wise and structural pruning.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا