ترغب بنشر مسار تعليمي؟ اضغط هنا

First-order classical Lagrangians for the nonminimal Standard-Model Extension

116   0   0.0 ( 0 )
 نشر من قبل Marco Schreck MS
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we derive the general leading-order classical Lagrangian covering all fermion operators of the nonminimal Standard-Model Extension (SME). Such a Lagrangian is considered to be the point-particle analog of the effective field theory description of Lorentz violation that is provided by the SME. First of all, a suitable Ansatz is made for the Lagrangian of the spin-degenerate operators $hat{a}$, $hat{c}$, $hat{e}$, and $hat{f}$ at leading order in Lorentz violation. The latter is shown to satisfy the set of five nonlinear equations that govern the map from the field theory to the classical description. After doing so, the second step is to propose results for the spin-nondegenerate operators $hat{b}$, $hat{d}$, $hat{H}$, and $hat{g}$. Although these are more involved than the Lagrangians for the spin-degenerate ones, an analytical proof of their validity is viable, nevertheless. The final step is to combine both findings to produce a generic Lagrangian for the complete set of Lorentz-violating operators that is consistent with the known minimal and nonminimal Lagrangians found in the literature so far. The outcome reveals the leading-order structure of the classical SME analog. It can be of use for both phenomenological studies of classical bodies in gravitational fields and conceptual work on explicit Lorentz violation in gravity. Furthermore, there may be a possible connection to Finsler geometry.

قيم البحث

اقرأ أيضاً

117 - M. Schreck 2019
The current paper is dedicated to determining perturbative expansions for Lagrangians describing classical, relativistic, pointlike particles subject to Lorentz violation parameterized by the nonminimal Standard-Model Extension (SME). An iterative te chnique recently developed and applied to a Lorentz-violating scalar field theory is now adopted to treat the spin-degenerate SME fermion sector. Lagrangians are obtained at third order in Lorentz violation for the operators $hat{a}_{mu}$, $hat{c}_{mu}$, $hat{e}$, $hat{f}$, and $hat{m}$ for arbitrary mass dimension. The results demonstrate the impact of nonzero spin on classical particle propagation. They will be useful for phenomenological studies of modified gravity and could provide useful insights into explicit Lorentz violation in curved spacetimes.
We present new results for classical-particle propagation subject to Lorentz violation. Our analysis is dedicated to spin-nondegenerate operators of arbitrary mass dimension provided by the fermion sector of the Standard-Model Extension. In particula r, classical Lagrangians are obtained for the operators $hat{b}_{mu}$ and $hat{H}_{mu u}$ as perturbative expansions in Lorentz violation. The functional dependence of the higher-order contributions in the background fields is found to be quite peculiar, which is probably attributed to particle spin playing an essential role for these cases. This paper closes one of the last gaps in understanding classical-particle propagation in the presence of Lorentz violation. Lagrangians of the kind presented will turn out to be valuable for describing particle propagation in curved backgrounds with diffeomorphism invariance and/or local Lorentz symmetry explicitly violated.
In the current paper, we construct a Lorentz-violating electrodynamics in (1+2) spacetime dimensions from the electromagnetic sector of the nonminimal Standard-Model Extension (SME) in (1+3) dimensions. Subsequently, we study some of the basic proper ties of this framework. We obtain the field equations, the Greens functions, and the perturbative Feynman rules. Furthermore, the modified dispersion relations are computed at leading order in Lorentz violation. We then remove the unphysical degrees of freedom from the electromagnetic Greens function that are present due to gauge invariance. The resulting object is used to construct the general solutions of the uncoupled field equations with external inhomogeneities present. This modified planar electrodynamics may be valuable to describe electromagnetic phenomena in two-dimensional condensed-matter systems. Furthermore, it supports a better understanding of the electromagnetic sector of the nonminimal SME.
109 - M. Sakamoto , K. Takenaga 2013
We consider the finite temperature effective potential of the standard model at the one-loop level in four dimensions by taking account of two kinds of order parameters, the Higgs vacuum expectation value and the zero modes of gauge fields for the Eu clidean time direction. We study the vacuum structure of the model, focusing on the existence of new phase, where the zero modes, that is, the new order parameters develop nontrivial vacuum expectation values except for the center of the gauge group. We find that under certain conditions there appears no new phase at finite temperature.
51 - Jay D. Tasson 2016
The Standard-Model Extension (SME) provides a comprehensive effective field-theory framework for the study of CPT and Lorentz symmetry. This work reviews the structure and philosophy of the SME and provides some intuitive examples of symmetry violati on. The results of recent gravitational tests performed within the SME are summarized including analysis of results from the Laser Interferometer Gravitational-Wave Observatory (LIGO), sensitivities achieved in short-range gravity experiments, constraints from cosmic-ray data, and results achieved by studying planetary ephemerids. Some proposals and ongoing efforts will also be considered including gravimeter tests, tests of the Weak Equivalence Principle, and antimatter experiments. Our review of the above topics is augmented by several original extensions of the relevant work. We present new examples of symmetry violation in the SME and use the cosmic-ray analysis to place first-ever constraints on 81 additional operators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا