ترغب بنشر مسار تعليمي؟ اضغط هنا

The Standard-Model Extension and Gravitational Tests

52   0   0.0 ( 0 )
 نشر من قبل Jay Tasson
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jay D. Tasson




اسأل ChatGPT حول البحث

The Standard-Model Extension (SME) provides a comprehensive effective field-theory framework for the study of CPT and Lorentz symmetry. This work reviews the structure and philosophy of the SME and provides some intuitive examples of symmetry violation. The results of recent gravitational tests performed within the SME are summarized including analysis of results from the Laser Interferometer Gravitational-Wave Observatory (LIGO), sensitivities achieved in short-range gravity experiments, constraints from cosmic-ray data, and results achieved by studying planetary ephemerids. Some proposals and ongoing efforts will also be considered including gravimeter tests, tests of the Weak Equivalence Principle, and antimatter experiments. Our review of the above topics is augmented by several original extensions of the relevant work. We present new examples of symmetry violation in the SME and use the cosmic-ray analysis to place first-ever constraints on 81 additional operators.



قيم البحث

اقرأ أيضاً

We present an explicit detailed theoretical and observational investigation of an anisotropic massive Brans-Dicke (BD) gravity extension of the standard $Lambda$CDM model, wherein the extension is characterized by two additional degrees of freedom; t he BD parameter, $omega$, and the present day density parameter corresponding to the shear scalar, $Omega_{sigma^2,0}$. The BD parameter, determining the deviation from general relativity (GR), by alone characterizes both the dynamics of the effective dark energy (DE) and the redshift dependence of the shear scalar. These two affect each other depending on $omega$, namely, the shear scalar contributes to the dynamics of the effective DE, and its anisotropic stress --which does not exist in scalar field models of DE within GR-- controls the dynamics of the shear scalar deviating from the usual $propto(1+z)^6$ form in GR. We mainly confine the current work to non-negative $omega$ values as it is the right sign --theoretically and observationally-- for investigating the model as a correction to the $Lambda$CDM. By considering the current cosmological observations, we find that $omegagtrsim 250$, $Omega_{sigma^2,0}lesssim 10^{-23}$ and the contribution of the anisotropy of the effective DE to this value is insignificant. We conclude that the simplest anisotropic massive BD gravity extension of the standard $Lambda$CDM model exhibits no significant deviations from it all the way to the Big Bang Nucleosynthesis. We also point out the interesting features of the model in the case of negative $omega$ values; for instance, the constraints on $Omega_{sigma^2,0}$ could be relaxed considerably, the values of $omegasim-1$ (relevant to string theories) predict dramatically different dynamics for the expansion anisotropy.
A gravitational extension of Diracs Extensible model of the electron is presented. The Dirac bubble, treated as a 3-dim electrically charged brane, is dynamically embedded within a 4-dim $Z_{2}$-symmetric Reissner-Nordstrom bulk. Crucial to our analy sis is the gravitational extension of Diracs brane variation prescription; its major effect is to induce a novel geometrically originated contribution to the energy-momentum tensor on the brane. In turn, the effective potential which governs the evolution of the bubble exhibits a global minimum, such that the size of the bubble stays finite (Planck scale) even at the limit where the mass approaches zero. This way, without fine-tuning, one avoids the problem so-called classical radius of the electron.
The analysis of gravitational wave data involves many model selection problems. The most important example is the detection problem of selecting between the data being consistent with instrument noise alone, or instrument noise and a gravitational wa ve signal. The analysis of data from ground based gravitational wave detectors is mostly conducted using classical statistics, and methods such as the Neyman-Pearson criteria are used for model selection. Future space based detectors, such as the emph{Laser Interferometer Space Antenna} (LISA), are expected to produced rich data streams containing the signals from many millions of sources. Determining the number of sources that are resolvable, and the most appropriate description of each source poses a challenging model selection problem that may best be addressed in a Bayesian framework. An important class of LISA sources are the millions of low-mass binary systems within our own galaxy, tens of thousands of which will be detectable. Not only are the number of sources unknown, but so are the number of parameters required to model the waveforms. For example, a significant subset of the resolvable galactic binaries will exhibit orbital frequency evolution, while a smaller number will have measurable eccentricity. In the Bayesian approach to model selection one needs to compute the Bayes factor between competing models. Here we explore various methods for computing Bayes factors in the context of determining which galactic binaries have measurable frequency evolution. The methods explored include a Reverse Jump Markov Chain Monte Carlo (RJMCMC) algorithm, Savage-Dickie density ratios, the Schwarz-Bayes Information Criterion (BIC), and the Laplace approximation to the model evidence. We find good agreement between all of the approaches.
We present constraints on violations of Lorentz Invariance based on Lunar Laser Ranging (LLR) data. LLR measures the Earth-Moon separation by timing the round-trip travel of light between the two bodies, and is currently accurate to a few centimeters (parts in $10^{11}$ of the total distance). By analyzing archival LLR data under the Standard-Model Extension (SME) framework, we derived six observational constraints on dimensionless SME parameters that describe potential Lorentz-violation. We found no evidence for Lorentz violation at the $10^{-6}$ to $10^{-11}$ level in these parameters.
We propose a generic, phenomenological approach to modifying the dispersion of gravitational waves, independent of corrections to the generation mechanism. This model-independent approach encapsulates all previously proposed parametrizations, includi ng Lorentz violation in the Standard-Model Extension, and provides a roadmap for additional theories. Furthermore, we present a general approach to include modulations to the gravitational-wave polarization content. The framework developed here can be implemented in existing data analysis pipelines for future gravitational-wave observation runs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا