ﻻ يوجد ملخص باللغة العربية
We develop a general method for customizing the intensity statistics of speckle patterns on a target plane. By judiciously modulating the phase-front of a monochromatic laser beam, we experimentally generate speckle patterns with arbitrarily-tailored intensity probability-density functions. Relative to Rayleigh speckles, our customized speckles exhibit radically different topologies yet maintain the same spatial correlation length. The customized speckles are fully developed, ergodic, and stationary: with circular non-Gaussian statistics for the complex field. Propagating away from the target plane, the customized speckles revert back to Rayleigh speckles. This work provides a versatile framework for tailoring speckle patterns with varied applications in microscopy, imaging and optical manipulation.
In traditional Hanbury Brown and Twiss (HBT) schemes, the thermal intensity-intensity correlations are phase insensitive. Here we propose a modified HBT scheme with phase conjugation to demonstrate the phase-sensitive and nonfactorizable features for
We study theoretically the spatial correlations between the intensities measured at the input and output planes of a disordered scattering medium. We show that at large optical thicknesses, a long-range spatial correlation persists and takes negative
We show that an intensity speckle can be directly interpreted as the properties of incident light - amplitude, phase, polarization, and coherency over spatial positions. Revisiting the speckle-correlation scattering matrix (SSM) method [Lee and Park,
Using a fully stochastic numerical scheme, we investigate the behaviour of a nanolaser in the low-coherence regime at the transition between spontaneous emission and lasing under the influence of intensity feedback. Studying the input-output curves a
We present a method for the measurement of the phase gradient of a wavefront by tracking the relative motion of speckles in projection holograms as a sample is scanned across the wavefront. By removing the need to obtain an un-distorted reference ima