ترغب بنشر مسار تعليمي؟ اضغط هنا

Intensity speckle presents the density matrix of light

360   0   0.0 ( 0 )
 نشر من قبل YongKeun Park
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that an intensity speckle can be directly interpreted as the properties of incident light - amplitude, phase, polarization, and coherency over spatial positions. Revisiting the speckle-correlation scattering matrix (SSM) method [Lee and Park, Nat. Comm. 7, 13359 (2016)], we successfully extract the intact information of incident light from an intensity speckle snapshot as the form of coherency matrix. The idea is verified experimentally by introducing the peculiar states of light that exhibit uneven amplitude, phase, polarization, and coherency features. We also find substantial practical advantage of the proposed method compared to the conventional coherency matrix measuring techniques such as Stokes polarimetry. We believe this physical interpretation of an intensity speckle could open a new avenue to study and to utilize the speckle phenomenon in vast subfields of wave physics.



قيم البحث

اقرأ أيضاً

In traditional Hanbury Brown and Twiss (HBT) schemes, the thermal intensity-intensity correlations are phase insensitive. Here we propose a modified HBT scheme with phase conjugation to demonstrate the phase-sensitive and nonfactorizable features for thermal intensity-intensity correlation speckle. Our scheme leads to results that are similar to those of the two-photon speckle. We discuss the possibility of the experimental realization. The results provide us a deeper insight of the thermal correlations and may lead to more significant applications in imaging and speckle technologies.
We develop a general method for customizing the intensity statistics of speckle patterns on a target plane. By judiciously modulating the phase-front of a monochromatic laser beam, we experimentally generate speckle patterns with arbitrarily-tailored intensity probability-density functions. Relative to Rayleigh speckles, our customized speckles exhibit radically different topologies yet maintain the same spatial correlation length. The customized speckles are fully developed, ergodic, and stationary: with circular non-Gaussian statistics for the complex field. Propagating away from the target plane, the customized speckles revert back to Rayleigh speckles. This work provides a versatile framework for tailoring speckle patterns with varied applications in microscopy, imaging and optical manipulation.
224 - N. Fayard , A. Caze , R. Pierrat 2015
We study theoretically the spatial correlations between the intensities measured at the input and output planes of a disordered scattering medium. We show that at large optical thicknesses, a long-range spatial correlation persists and takes negative values. For small optical thicknesses, short-range and long-range correlations coexist, with relative weights that depend on the optical thickness. These results may have direct implications for the control of wave transmission through complex media by wavefront shaping, thus finding applications in sensing, imaging and information transfer.
We report an experimental demonstration of a nonclassical imaging mechanism with super-resolving power beyond the Rayleigh limit. When the classical image is completely blurred out due to the use of a small imaging lens, by taking advantage of the in tensity fluctuation correlation of thermal light, the demonstrated camera recovered the image of the resolution testing gauge. This method could be adapted to long distance imaging, such as satellite imaging, which requires large diameter camera lenses to achieve high image resolution.
Established x-ray diffraction methods allow for high-resolution structure determination of crystals, crystallized protein structures or even single molecules. While these techniques rely on coherent scattering, incoherent processes like Compton scatt ering or fluorescence emission -- often the predominant scattering mechanisms -- are generally considered detrimental for imaging applications. Here we show that intensity correlations of incoherently scattered x-ray radiation can be used to image the full 3D structure of the scattering atoms with significantly higher resolution compared to conventional coherent diffraction imaging and crystallography, including additional three-dimensional information in Fourier space for a single sample orientation. We present a number of properties of incoherent diffractive imaging that are conceptually superior to those of coherent methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا