ﻻ يوجد ملخص باللغة العربية
There is a cognitive limit in Human Mind. This cognitive limit has played a decisive role in almost all fields including computer sciences. The cognitive limit replicated in computer sciences is responsible for inherent Computational Complexity. The complexity starts decreasing if certain conditions are met, even sometime it does not appears at all. Very simple Mechanical computing systems are designed and implemented to demonstrate this idea and it is further supported by Electrical systems. These verifiable and consistent systems demonstrate the idea of computational complexity reduction. This work explains a very important but invisible connection from Mind to Mathematical axioms (Peano Axioms etc.) and Mathematical axioms to computational complexity. This study gives a completely new perspective that goes well beyond Cognitive Science, Mathematics, Physics, Computer Sciences and Philosophy. Based on this new insight some important predictions are made.
Theory of Mind is commonly defined as the ability to attribute mental states (e.g., beliefs, goals) to oneself, and to others. A large body of previous work - from the social sciences to artificial intelligence - has observed that Theory of Mind capa
The present document is an excerpt of an essay that I wrote as part of my application material to graduate school in Computer Science (with a focus on Artificial Intelligence), in 1986. I was not invited by any of the schools that received it, so I b
Ligands for only two human olfactory receptors are known. One of them, OR1D2, binds to Bourgeonal [Malnic B, Godfrey P-A, Buck L-B (2004) The human olfactory receptor gene family. Proc. Natl. Acad. Sci U. S. A. 101: 2584-2589 and Erratum in: Proc Nat
Computers are known to solve a wide spectrum of problems, however not all problems are computationally solvable. Further, the solvable problems themselves vary on the amount of computational resources they require for being solved. The rigorous analy
We discuss the connection between computational social choice (comsoc) and computational complexity. We stress the work so far on, and urge continued focus on, two less-recognized aspects of this connection. Firstly, this is very much a two-way stree