ﻻ يوجد ملخص باللغة العربية
Computers are known to solve a wide spectrum of problems, however not all problems are computationally solvable. Further, the solvable problems themselves vary on the amount of computational resources they require for being solved. The rigorous analysis of problems and assigning them to complexity classes what makes up the immense field of complexity theory. Do protein folding and sudoku have something in common? It might not seem so but complexity theory tells us that if we had an algorithm that could solve sudoku efficiently then we could adapt it to predict for protein folding. This same property is held by classic platformer games such as Super Mario Bros, which was proven to be NP-complete by Erik Demaine et. al. This article attempts to review the analysis of classical platformer games. Here, we explore the field of complexity theory through a broad survey of literature and then use it to prove that that solving a generalized level in the game Celeste is NP-complete. Later, we also show how a small change in it makes the game presumably harder to compute. Various abstractions and formalisms related to modelling of games in general (namely game theory and constraint logic) and 2D platformer video games, including the generalized meta-theorems originally formulated by Giovanni Viglietta are also presented.
Recently, a standardized framework was proposed for introducing quantum-inspired moves in mathematical games with perfect information and no chance. The beauty of quantum games-succinct in representation, rich in structures, explosive in complexity,
We describe the Turing Machine, list some of its many influences on the theory of computation and complexity of computations, and illustrate its importance.
Covering spaces of graphs have long been useful for studying expanders (as graph lifts) and unique games (as the label-extended graph). In this paper we advocate for the thesis that there is a much deeper relationship between computational topology a
In two papers, Burgisser and Ikenmeyer (STOC 2011, STOC 2013) used an adaption of the geometric complexity theory (GCT) approach by Mulmuley and Sohoni (Siam J Comput 2001, 2008) to prove lower bounds on the border rank of the matrix multiplication t
We analyze the computational complexity of optimally playing the two-player board game Push Fight, generalized to an arbitrary board and number of pieces. We prove that the game is PSPACE-hard to decide who will win from a given position, even for si