ﻻ يوجد ملخص باللغة العربية
In the following, bypassing dynamical systems tools, we propose a simple means of computing the box dimension of the graph of the classical Weierstrass function defined, for any real number~$x$, by~$ {cal W}(x)=displaystyle sum_{n=0}^{+infty} lambda^n,cos left ( 2, pi,N_b^n,x right) $, where~$lambda$ and~$N_b$ are two real numbers such that~mbox{$0 <lambda<1$},~mbox{$ N_b,in,N$} and~$ lambda,N_b > 1 $, using a sequence a graphs that approximate the studied one.
Many large-scale machine learning problems involve estimating an unknown parameter $theta_{i}$ for each of many items. For example, a key problem in sponsored search is to estimate the click through rate (CTR) of each of billions of query-ad pairs. M
We investigate Weierstrass functions with roughness parameter $gamma$ that are Holder continuous with coefficient $H={loggamma}/{log frac12}.$ Analytical access is provided by an embedding into a dynamical system related to the baker transform where
In this paper, we discuss a method of constructing separable representations of the $C^*$-algebras associated to strongly connected row-finite $k$-graphs $Lambda$. We begin by giving an alternative characterization of the $Lambda$-semibranching funct
A class of two-dimensional linear differential systems is considered. The box-counting dimension of the graphs of solution curves is calculated. Criteria to obtain the box-counting dimension of spirals are also established.
We show that the graph of the classical Weierstrass function $sum_{n=0}^infty lambda^n cos (2pi b^n x)$ has Hausdorff dimension $2+loglambda/log b$, for every integer $bge 2$ and every $lambdain (1/b,1)$. Replacing $cos(2pi x)$ by a general non-const