ﻻ يوجد ملخص باللغة العربية
Many large-scale machine learning problems involve estimating an unknown parameter $theta_{i}$ for each of many items. For example, a key problem in sponsored search is to estimate the click through rate (CTR) of each of billions of query-ad pairs. Most common methods, though, only give a point estimate of each $theta_{i}$. A posterior distribution for each $theta_{i}$ is usually more useful but harder to get. We present a simple post-processing technique that takes point estimates or scores $t_{i}$ (from any method) and estimates an approximate posterior for each $theta_{i}$. We build on the idea of calibration, a common post-processing technique that estimates $mathrm{E}left(theta_{i}!!bigm|!! t_{i}right)$. Our method, second order calibration, uses empirical Bayes methods to estimate the distribution of $theta_{i}!!bigm|!! t_{i}$ and uses the estimated distribution as an approximation to the posterior distribution of $theta_{i}$. We show that this can yield improved point estimates and useful accuracy estimates. The method scales to large problems - our motivating example is a CTR estimation problem involving tens of billions of query-ad pairs.
The algorithms used for optimal management of ambulances require accurate description and prediction of the spatio-temporal evolution of emergency interventions. In the last years, several authors have proposed sophisticated statistical approaches to
Arctic sea ice plays an important role in the global climate. Sea ice models governed by physical equations have been used to simulate the state of the ice including characteristics such as ice thickness, concentration, and motion. More recent models
Positron Emission Tomography (PET) is an imaging technique which can be used to investigate chemical changes in human biological processes such as cancer development or neurochemical reactions. Most dynamic PET scans are currently analyzed based on t
In the following, bypassing dynamical systems tools, we propose a simple means of computing the box dimension of the graph of the classical Weierstrass function defined, for any real number~$x$, by~$ {cal W}(x)=displaystyle sum_{n=0}^{+infty} lambda^
This work is motivated by the Obepine French system for SARS-CoV-2 viral load monitoring in wastewater. The objective of this work is to identify, from time-series of noisy measurements, the underlying auto-regressive signals, in a context where the