ﻻ يوجد ملخص باللغة العربية
Very recently, it has been shown that vanadium dichalcogenides (VX$_2$, X=S, Se and Te) monolayers show intrinsic ferromagnetism, and their critical temperatures are nearly to or beyond room temperature. Hence, they would have wide potential applications in next-generation nanoelectronic and spintronic devices. In this work, being inspired by a recent study we systematically perform Monte Carlo simulations based on single-site update Metropolis algorithm to investigate the hysteresis features of VX$_2$ monolayers for a wide range of temperatures up to 600 K. Our simulation results indicate that, both remanence and coercivity values tend to decrease with increasing temperature. Furthermore, it is found that hysteresis curves start to evolve from rectangular at the lower temperature regions to nearly S-shaped with increasing temperature.
First-principle calculations with different exchange-correlation functionals, including LDA, PBE and vdW-DF functional in form of optB88-vdW, have been performed to investigate the electronic and elastic properties of two dimensional transition metal
Charge density wave (CDW) is a collective quantum phenomenon in metals and features a wave-like modulation of the conduction electron density. A microscopic understanding and experimental control of this many-body electronic state in atomically thin
Most of the 2D transition metal dichalcogenides (TMDC) are nonmagnetic in pristine form. However, 2D pristine VX2 (X=S, Se, Te) materials are found to be ferromagnetic. Using spin polarized density functional theory (DFT) calculations, we have studie
Using angle resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) calculations we studied the low-energy electronic structure of bulk ZrTe$_2$. ARPES studies on ZrTe$_2$ demonstrate free charge carriers at the Fermi level, w
Transition metal dichalcogenides are rich in their structural phases, e.g. 1T-TaS2 and 1T-TaSe2 form charge density wave (CDW) under low temperature with interesting and exotic properties. Here, we present a systematic study of different structures i