ﻻ يوجد ملخص باللغة العربية
Monolayer NbSe$_2$ has recently been shown to be a 2-dimensional superconductor, with a competing charge-density wave (CDW) order. This work investigates the electronic structure of monolayer NbSe$_2$ based on first principles calculations, focusing on charge and magnetic orders in connection to the superconductivity. It is found that decreased screening in the monolayer NbSe$_2$ with a perfect lattice exhibits magnetic instability, which is removed by the formation of CDW. Two energetically competitive but distinct $3times3$ CDW structures are revealed computationally, which have a significant impact on the Fermi surface. The relations of the potential CDW phases with experimental structure and the coexisting superconductivity are discussed.
We study the electronic and structural properties of the low-temperature ordered phase of hydrogen-bonded molecular conductors, $kappa$-D$_3$(Cat-EDT-TTF)$_2$ and its selenium-substituted analog $kappa$-D$_3$(Cat-EDT-ST)$_2$, by means of first-princi
The fluctuations of the magnetic order parameter, or longitudinal spin excitations, are investigated theoretically in the ferromagnetic Fe and Ni as well as in the antiferromagnetic phase of the pnictide superconductor FeSe. The charge and spin dynam
SnSe monolayer with orthorhombic Pnma GeS structure is an important two-dimensional (2D) indirect band gap material at room temperature. Based on first-principles density functional theory calculations, we present systematic studies on the electronic
Using a combination of Density Functional Theory, mean-field analysis and exact diagonalization calculations we reveal the emergence of a dimerized charge ordered state in TMTTF$_2$-PF$_6$ organic crystal. The interplay between charge and spin order
We present first principles calculations of the magnetic and orbital properties of Ba$_2$NaOsO$_6$ (BNOO), a 5$d^1$ Mott insulator with strong spin orbit coupling (SOC) in its low temperature emergent quantum phases. Our computational method takes in