ﻻ يوجد ملخص باللغة العربية
We discuss the Kirillov method for massless Wigner particles, usually (mis)named continuous spin or infinite spin particles. These appear in Wigners classification of the unitary representations of the Poincare group, labelled by elements of the enveloping algebra of the Poincare Lie algebra. Now, the coadjoint orbit procedure introduced by Kirillov is a prelude to quantization. Here we exhibit for those particles the classical Casimir functions on phase space, in parallel to quantum representation theory. A good set of position coordinates are identified on the coadjoint orbits of the Wigner particles; the stabilizer subgroups and the symplectic structures of these orbits are also described.
It is well known in NSR string theory, that vertex operators can be constructed in various ``pictures. Recently this was discussed in the context of pure spinor formalism. NSR picture changing operators have an elegant super-geometrical interpretatio
The Bargmann-Wigner (BW) framework describes particles of spin-j in terms of Dirac spinors of rank 2j, obtained as the local direct product of n Dirac spinor copies, with n=2j. Such spinors are reducible, and contain also (j,0)+(0,j)-pure spin repres
It is shown that the quantum ground state energy of particle of mass m and electric charge e moving on a compact Riemann surface under the influence of a constant magnetic field of strength B is E_0=eB/2m. Remarkably, this formula is completely indep
We review the noncommutative approach to the standard model. We start with the introduction if the mathematical concepts necessary for the definition of noncommutative spaces, and manifold in particular. This defines the framework of spectral geometr
In this survey, our aim is to emphasize the main known limitations to the use of Wigner measures for Schrodinger equations. After a short review of successful applications of Wigner measures to study the semi-classical limit of solutions to Schroding