ﻻ يوجد ملخص باللغة العربية
Nowadays, deep learning has been widely used. In natural language learning, the analysis of complex semantics has been achieved because of its high degree of flexibility. The deceptive opinions detection is an important application area in deep learning model, and related mechanisms have been given attention and researched. On-line opinions are quite short, varied types and content. In order to effectively identify deceptive opinions, we need to comprehensively study the characteristics of deceptive opinions, and explore novel characteristics besides the textual semantics and emotional polarity that have been widely used in text analysis. The detection mechanism based on deep learning has better self-adaptability and can effectively identify all kinds of deceptive opinions. In this paper, we optimize the convolution neural network model by embedding the word order characteristics in its convolution layer and pooling layer, which makes convolution neural network more suitable for various text classification and deceptive opinions detection. The TensorFlow-based experiments demonstrate that the detection mechanism proposed in this paper achieve more accurate deceptive opinion detection results.
In this paper we perform an analytic comparison of a number of techniques used to detect fake and deceptive online reviews. We apply a number machine learning approaches found to be effective, and introduce our own approach by fine-tuning state of th
Small footprint embedded devices require keyword spotters (KWS) with small model size and detection latency for enabling voice assistants. Such a keyword is often referred to as textit{wake word} as it is used to wake up voice assistant enabled devic
Authorship analysis is an important subject in the field of natural language processing. It allows the detection of the most likely writer of articles, news, books, or messages. This technique has multiple uses in tasks related to authorship attribut
For most intelligent assistant systems, it is essential to have a mechanism that detects out-of-domain (OOD) utterances automatically to handle noisy input properly. One typical approach would be introducing a separate class that contains OOD utteran
In this paper, we study the problem of deceptive reinforcement learning to preserve the privacy of a reward function. Reinforcement learning is the problem of finding a behaviour policy based on rewards received from exploratory behaviour. A key ingr