ترغب بنشر مسار تعليمي؟ اضغط هنا

Proper Motion of the High-Velocity Pulsar in SNR MSH 15-56

66   0   0.0 ( 0 )
 نشر من قبل Tea Temim
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a measurement of the proper motion of the presumed pulsar in the evolved composite supernova remnant (SNR) MSH 15-56 whose pulsar wind nebula (PWN) has been disrupted by the supernova (SN) reverse shock. Using Chandra X-ray observations acquired over a baseline of 15 years, we measure a pulsar velocity of 720 (+290/-215) km/s and a direction of motion of 14 +/- 22 degrees west of south. We use this measurement to constrain a hydrodynamical model for the evolution of this system and find that its morphology is well-described by an SNR expanding in an ambient density gradient that increases from east to west. The effect of the density gradient and the pulsars motion is an asymmetric interaction between the SN reverse shock and the PWN that displaces the bulk of the PWN material away from the pulsar, towards the northeast. The simulation is consistent with an SNR age of 11,000 years, an SN ejecta mass of 10 solar masses, and an average surrounding density of 0.4 cm^-3. However, a combination of a higher SN ejecta mass and ambient density can produce a similar SNR morphology at a later age.



قيم البحث

اقرأ أيضاً

We measure the proper motion of the pulsar PSR J1745-2900 relative to the Galactic Center massive black hole, Sgr A*, using the Very Long Baseline Array (VLBA). The pulsar has a transverse velocity of 236 +/- 11 km s^-1 at position angle 22 +/- 2 deg East of North at a projected separation of 0.097 pc from Sgr A*. Given the unknown radial velocity, this transverse velocity measurement does not conclusively prove that the pulsar is bound to Sgr A*; however, the probability of chance alignment is very small. We do show that the velocity and position is consistent with a bound orbit originating in the clockwise disk of massive stars orbiting Sgr A* and a natal velocity kick of <~ 500 km s^-1. An origin among the isotropic stellar cluster is possible but less probable. If the pulsar remains radio-bright, multi-year astrometry of PSR J1745-2900 can detect its acceleration and determine the full three-dimensional orbit. We also demonstrate that PSR J1745-2900 exhibits the same angular broadening as Sgr A* over a wavelength range of 3.6 cm to 0.7 cm, further confirming that the two sources share the same interstellar scattering properties. Finally, we place the first limits on the presence of a wavelength-dependent shift in the position of Sgr A*, i.e., the core shift, one of the expected properties of optically-thick jet emission. Our results for PSR J1745-2900 support the hypothesis that Galactic Center pulsars will originate from the stellar disk and deepens the mystery regarding the small number of detected Galactic Center pulsars.
We have obtained a deep 670 ks CXO ACIS image of the remarkable pulsar wind nebula (PWN) of PSR J1709-4429, in 4 epochs during 2018-2019. Comparison with an archival 2004 data set provides a pulsar proper motion mu = 13 pm 3 mas/yr at a PA of 86 pm 9 degree (1 sigma combined statistical and systematic uncertainties), precluding birth near the center of SNR G343.1-2.3. At the pulsars characteristic age of 17 kyr, the association can be preserved through a combination of progenitor wind, birth kick and PWN outflow. Associated TeV emission may, however, indicate explosion in an earlier supernova. Inter-epoch comparison of the X-ray images shows that the PWN is dynamic, but we are unable to conclusively measure flow speeds from blob motion. The pulsar has generated a radio/X-ray wind bubble, and we argue that the PWNs long narrow jets are swept back by shocked pulsar wind venting from this cavity. These jets may trace the polar magnetic field lines of the PWN flow, an interesting challenge for numerical modeling.
We present the results of a BeppoSAX observation of the Supernova Remnant MSH 15-52, associated with the pulsar PSR B1509-58, and discuss its main morphological and spectroscopic properties in the 1.6--200 keV energy range (MECS and PDS instruments). The two main structures of the remnant, the Southern Nebula, the plerion centered on the pulsar, and the Northern Nebula, are clearly visible in the MECS, with the former showing a much a harder spectrum. Furthermore, a diffuse extended emission surrounds the whole remnant up to ~ 17 from the center. Non-thermal flux is detected in the PDS up to 200 keV as well, and it appears that also in this energy range the emission is not concentrated in the central region around the pulsar. These data imply that the plerion extends up to a few tens of parsecs from the pulsar.
We obtained six observations of PSR J1741-2054 using the $Chandra$ ACIS-S detector totaling $sim$300 ks. By registering this new epoch of observations to an archival observation taken 3.2 years earlier using X-ray point sources in the field of view, we have measured the pulsar proper motion at $mu =109 pm 10 {rm mas yr}^{-1}$ in a direction consistent with the symmetry axis of the observed H$alpha$ nebula. We investigated the inferred past trajectory of the pulsar but find no compelling association with OB associations in which the progenitor may have originated. We confirm previous measurements of the pulsar spectrum as an absorbed power law with photon index $Gamma$=2.68$pm$0.04, plus a blackbody with an emission radius of (4.5$^{+3.2}_{-2.5})d_{0.38}$ km, for a DM-estimated distance of $0.38d_{0.38}$ kpc and a temperature of $61.7pm3.0$ eV. Emission from the compact nebula is well described by an absorbed power law model with a photon index of $Gamma$ = 1.67$pm$0.06, while the diffuse emission seen as a trail extending northeast of the pulsar shows no evidence of synchrotron cooling. We also applied image deconvolution techniques to search for small-scale structures in the immediate vicinity of the pulsar, but found no conclusive evidence for such structures.
One of the youngest known remnants of a core-collapse supernova (SN) in our Galaxy is G320.4$-$1.2/MSH 15-52 containing an energetic pulsar with a very short (1700 yr) spindown age and likely produced by a stripped-envelope SN Ibc. Bright X-ray and r adio emission north of the pulsar overlaps with an H$alpha$ nebula RCW 89. The bright X-rays there have a highly unusual and quite puzzling morphology, consisting of both very compact thermally emitting knots and much more diffuse emission of nonthermal origin. We report new X-ray observations of RCW 89 in 2017 and 2018 with Chandra that allowed us to measure the motions of many knots and filaments on decade-long time baselines. We identify a fast blast wave with a velocity of $(4000 pm 500)d_{5.2}$ km/s ($d_{5.2}$ is the distance in units of 5.2 kpc) with a purely nonthermal spectrum, and without any radio counterpart. Many compact X-ray emission knots are moving vary fast, with velocities as high as 5000 km/s, predominantly radially away from the pulsar. Their spectra show that they are Ne- and Mg-rich heavy-element SN ejecta. They have been significantly decelerated upon their recent impact with the dense ambient medium north of the pulsar. We see fast evolution in brightness and morphology of knots in just a few years. Ejecta knots in RCW 89 resemble those seen in Cas A at optical wavelengths in terms of their initial velocities and densities. They might have the same origin, still not understood but presumably related to stripped-envelope SN explosions themselves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا