ﻻ يوجد ملخص باللغة العربية
We measure the proper motion of the pulsar PSR J1745-2900 relative to the Galactic Center massive black hole, Sgr A*, using the Very Long Baseline Array (VLBA). The pulsar has a transverse velocity of 236 +/- 11 km s^-1 at position angle 22 +/- 2 deg East of North at a projected separation of 0.097 pc from Sgr A*. Given the unknown radial velocity, this transverse velocity measurement does not conclusively prove that the pulsar is bound to Sgr A*; however, the probability of chance alignment is very small. We do show that the velocity and position is consistent with a bound orbit originating in the clockwise disk of massive stars orbiting Sgr A* and a natal velocity kick of <~ 500 km s^-1. An origin among the isotropic stellar cluster is possible but less probable. If the pulsar remains radio-bright, multi-year astrometry of PSR J1745-2900 can detect its acceleration and determine the full three-dimensional orbit. We also demonstrate that PSR J1745-2900 exhibits the same angular broadening as Sgr A* over a wavelength range of 3.6 cm to 0.7 cm, further confirming that the two sources share the same interstellar scattering properties. Finally, we place the first limits on the presence of a wavelength-dependent shift in the position of Sgr A*, i.e., the core shift, one of the expected properties of optically-thick jet emission. Our results for PSR J1745-2900 support the hypothesis that Galactic Center pulsars will originate from the stellar disk and deepens the mystery regarding the small number of detected Galactic Center pulsars.
We report measurements with the Very Long Baseline Array of the proper motion of Sgr A* relative to two extragalactic radio sources spanning 18 years. The apparent motion of Sgr A* is -6.411 +/- 0.008 mas/yr along the Galactic plane and -0.219 +/- 0.
We present a measurement of the proper motion of the presumed pulsar in the evolved composite supernova remnant (SNR) MSH 15-56 whose pulsar wind nebula (PWN) has been disrupted by the supernova (SN) reverse shock. Using Chandra X-ray observations ac
Understanding the origin of the flaring activity from the Galactic center supermassive black hole, Sagittarius A*, is a major scientific goal of the NuSTAR Galactic plane survey campaign. We report on the data obtained between July 2012 and April 201
The leading explanation of the $textit{Fermi}$ Galactic center $gamma$-ray excess is the extended emission from a unresolved population of millisecond pulsars (MSPs) in the Galactic bulge. Such a population would, along with the prompt $gamma$ rays,
We obtained six observations of PSR J1741-2054 using the $Chandra$ ACIS-S detector totaling $sim$300 ks. By registering this new epoch of observations to an archival observation taken 3.2 years earlier using X-ray point sources in the field of view,