ﻻ يوجد ملخص باللغة العربية
We study a variational model which combines features of the Ginzburg-Landau model in 2D and of the Mumford-Shah functional. As in the classical Ginzburg-Landau theory, a prescribed number of point vortices appear in the small energy regime; the model allows for discontinuities, and the energy penalizes their length. The novel phenomenon here is that the vortices have a fractional degree $1/m$ with $mgeq 2$ prescribed. Those vortices must be connected by line discontinuities to form clusters of total integer degrees. The vortices and line discontinuities are therefore coupled through a topological constraint. As in the Ginzburg-Landau model, the energy is parameterized by a small length scale $varepsilon>0$. We perform a complete $Gamma$-convergence analysis of the model as $varepsilondownarrow0$ in the small energy regime. We then study the structure of minimizers of the limit problem. In particular, we show that the line discontinuities of a minimizer solve a variant of the Steiner problem. We finally prove that for small $varepsilon>0$, the minimizers of the original problem have the same structure away from the limiting vortices.
We consider a Ginzburg-Landau type energy with a piecewise constant pinning term $a$ in the potential $(a^2 - |u|^2)^2$. The function $a$ is different from 1 only on finitely many disjoint domains, called the {it pinning domains}. These pinning domai
We discuss fluctuation-induced forces in a system described by a continuous Landau-Ginzburg model with a quenched disorder field, defined in a $d$-dimensional slab geometry $mathbb R^{d-1}times[0,L]$. A series representation for the quenched free ene
We study the Ginzburg-Landau model of type-I superconductors in the regime of small external magnetic fields. We show that, in an appropriate asymptotic regime, flux patterns are described by a simplified branched transportation functional. We derive
We study the Cauchy problem for a coupled system of a complex Ginzburg-Landau equation with a quasilinear conservation law $$ left{begin{array}{rlll} e^{-itheta}u_t&=&u_{xx}-|u|^2u-alpha g(v)u& v_t+(f(v))_x&=&alpha (g(v)|u|^2)_x& end{array}right. qqu
We study Gamma-convergence of graph based Ginzburg-Landau functionals, both the limit for zero diffusive interface parameter epsilon->0 and the limit for infinite nodes in the graph m -> infinity. For general graphs we prove that in the limit epsilon