ﻻ يوجد ملخص باللغة العربية
Stanene (single-layer grey tin), with an electronic structure akin to that of graphene but exhibiting a much larger spin-orbit gap, offers a promising platform for room-temperature electronics based on the quantum spin Hall (QSH) effect. This material has received much theoretical attention, but a suitable substrate for stanene growth that results in an overall gapped electronic structure has been elusive; a sizable gap is necessary for room-temperature applications. Here, we report a study of stanene epitaxially grown on the (111)B-face of indium antimonide (InSb). Angle-resolved photoemission spectroscopy (ARPES) measurements reveal a gap of 0.44 eV, in agreement with our first-principles calculations. The results indicate that stanene on InSb(111) is a strong contender for electronic QSH applications.
We review progress in developing epitaxial graphene as a material for carbon electronics. In particular, improvements in epitaxial graphene growth, interface control and the understanding of multilayer epitaxial graphenes electronic properties are di
Ultrathin semiconductors present various novel electronic properties. The first experimental realized two-dimensional (2D) material is graphene. Searching 2D materials with heavy elements bring the attention to Si, Ge and Sn. 2D buckled Si-based sili
We report that the {pi}-electrons of graphene can be spin-polarized to create a phase with a significant spin-orbit gap at the Dirac point (DP) using a graphene-interfaced topological insulator hybrid material. We have grown epitaxial Bi2Te2Se (BTS)
The ability to imprint a given material property to another through proximity effect in layered two-dimensional materials has opened the way to the creation of designer materials. Here, we use molecular-beam epitaxy (MBE) for a direct synthesis of a
The spin structure of the valence and conduction bands at the $overline{text{K}}$ and $overline{text{K}}$ valleys of single-layer WS$_2$ on Au(111) is determined by spin- and angle-resolved photoemission and inverse photoemission. The bands confining