ﻻ يوجد ملخص باللغة العربية
In previous experiments by the authors on a magnetic dipole interacting with a laser-produced plasma the generation of an intense field-aligned current (FAC) system on terrella poles was observed. In this paper the question of the origin of these currents in a low-latitude boundary layer of magnetosphere is investigated. Experimental evidence of such a link was obtained by measurements of the magnetic field generated by tangential drag and sheared stress. This specific azimuthal field was found to have quadruple symmetry and local maxima inside the magnetosphere adjacent to the boundary layer. Cases of metallic and dielectric dipole covers modeling good conductive and non-conductive ionosphere revealed that the presence or absence of FACs results in different amplitudes and spatial structures of the sheared field. The current associated with the azimuthal field flows upward at the dawnside, and toward the equator plane at the duskside. It was found to coincide by direction and to correspond by amplitude to a total cross-polar current measured independently. The results suggest that compressional and Alfven waves are responsible for FAC generation. The study is most relevant to FACgeneration in the magnetospheres of Earth and Mercury following pressure jumps in solar wind.
In an experiment on a magnetic dipole interacting with a laser-produced plasma the generation of an intense field aligned current (FAC) system was observed for the first time in a laboratory. The detailed measurements of the total value and local cur
In the spirit of continued study of general plasma wave properties we investigated the boundary problem with the simplest form of electric field pulse at the edge x=0 of half-infinite uniform plasma slab with Maxwellian electron distribution function
Increases of ion fluxes in the keV-MeV range are sometimes observed near the heliospheric current sheet (HCS) during periods when other sources are absent. These resemble solar energetic particle (SEP) events, but the events are weaker and apparently
During magnetic reconnection in collisionless space plasma, the electron fluid decouples from the magnetic field within narrow current layers, and theoretical models for this process can be distinguished in terms of their predicted current layer widt
The formation, development and impact of slow shocks in the upstream region of reconnecting current layers are explored. Slow shocks have been documented in the upstream region of magnetohydrodynamic (MHD) simulations of magnetic reconnection as well